IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v208y2023icp424-443.html
   My bibliography  Save this article

Finite time passivity analysis for Caputo fractional BAM reaction–diffusion delayed neural networks

Author

Listed:
  • Wang, Chen
  • Zhang, Hai
  • Ye, Renyu
  • Zhang, Weiwei
  • Zhang, Hongmei

Abstract

The issues of finite time passivity are explored for BAM reaction–diffusion neural networks including discrete delayed and Caputo fractional partial differential operator. With the help of fractional Lyapunov function and existing passivity definition (integral form or fractional integral form), four finite time passivity definitions are given out in Caputo-type fractional derivative form under the double-layer network structure. In this way, the fractional derivative of Lyapunov function can be directly obtained to judge whether the system is passive. Constructing a suitable mixed controller with sign function, several passivity conditions are established as matrix inequality form by utilizing the Green’s theorem, Jensen’s integral inequality, Lyapunov functional approach and four novel definitions. At last, one example is appeared to better illustrate the obtained conditions.

Suggested Citation

  • Wang, Chen & Zhang, Hai & Ye, Renyu & Zhang, Weiwei & Zhang, Hongmei, 2023. "Finite time passivity analysis for Caputo fractional BAM reaction–diffusion delayed neural networks," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 208(C), pages 424-443.
  • Handle: RePEc:eee:matcom:v:208:y:2023:i:c:p:424-443
    DOI: 10.1016/j.matcom.2023.01.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475423000563
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2023.01.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pratap, A. & Raja, R. & Cao, J. & Lim, C.P. & Bagdasar, O., 2019. "Stability and pinning synchronization analysis of fractional order delayed Cohen–Grossberg neural networks with discontinuous activations," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 241-260.
    2. Zhang, Hai & Cheng, Jingshun & Zhang, Hongmei & Zhang, Weiwei & Cao, Jinde, 2021. "Quasi-uniform synchronization of Caputo type fractional neural networks with leakage and discrete delays★," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    3. Yuxiao Zhao & Linshan Wang, 2022. "Practical Exponential Stability of Impulsive Stochastic Food Chain System with Time-Varying Delays," Mathematics, MDPI, vol. 11(1), pages 1-12, December.
    4. Zhang, Hai & Cheng, Yuhong & Zhang, Weiwei & Zhang, Hongmei, 2023. "Time-dependent and Caputo derivative order-dependent quasi-uniform synchronization on fuzzy neural networks with proportional and distributed delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 846-857.
    5. Usa Humphries & Grienggrai Rajchakit & Pramet Kaewmesri & Pharunyou Chanthorn & Ramalingam Sriraman & Rajendran Samidurai & Chee Peng Lim, 2020. "Global Stability Analysis of Fractional-Order Quaternion-Valued Bidirectional Associative Memory Neural Networks," Mathematics, MDPI, vol. 8(5), pages 1-27, May.
    6. Zhang, Hai & Cheng, Yuhong & Zhang, Hongmei & Zhang, Weiwei & Cao, Jinde, 2022. "Hybrid control design for Mittag-Leffler projective synchronization on FOQVNNs with multiple mixed delays and impulsive effects," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 197(C), pages 341-357.
    7. Grienggrai Rajchakit & Anbalagan Pratap & Ramachandran Raja & Jinde Cao & Jehad Alzabut & Chuangxia Huang, 2019. "Hybrid Control Scheme for Projective Lag Synchronization of Riemann–Liouville Sense Fractional Order Memristive BAM NeuralNetworks with Mixed Delays," Mathematics, MDPI, vol. 7(8), pages 1-23, August.
    8. Maharajan, C. & Raja, R. & Cao, Jinde & Rajchakit, G. & Tu, Zhengwen & Alsaedi, Ahmed, 2018. "LMI-based results on exponential stability of BAM-type neural networks with leakage and both time-varying delays: A non-fragile state estimation approach," Applied Mathematics and Computation, Elsevier, vol. 326(C), pages 33-55.
    9. Thoiyab, N. Mohamed & Muruganantham, P. & Zhu, Quanxin & Gunasekaran, Nallappan, 2021. "Novel results on global stability analysis for multiple time-delayed BAM neural networks under parameter uncertainties," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    10. Guo, Runan & Zhang, Ziye & Liu, Xiaoping & Lin, Chong, 2017. "Existence, uniqueness, and exponential stability analysis for complex-valued memristor-based BAM neural networks with time delays," Applied Mathematics and Computation, Elsevier, vol. 311(C), pages 100-117.
    11. Wang, Tianyu & Zhu, Quanxin, 2019. "Stability analysis of stochastic BAM neural networks with reaction–diffusion, multi-proportional and distributed delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 533(C).
    12. Shafiya, M. & Nagamani, G., 2022. "New finite-time passivity criteria for delayed fractional-order neural networks based on Lyapunov function approach," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    13. Manickam Iswarya & Ramachandran Raja & Grienggrai Rajchakit & Jinde Cao & Jehad Alzabut & Chuangxia Huang, 2019. "Existence, Uniqueness and Exponential Stability of Periodic Solution for Discrete-Time Delayed BAM Neural Networks Based on Coincidence Degree Theory and Graph Theoretic Method," Mathematics, MDPI, vol. 7(11), pages 1-18, November.
    14. Chaouki Aouiti & Qing Hui & Emmanuel Moulay & Farid Touati, 2022. "Global dissipativity of fuzzy genetic regulatory networks with mixed delays," International Journal of Systems Science, Taylor & Francis Journals, vol. 53(12), pages 2644-2663, September.
    15. Hajimohammadi, Zeinab & Baharifard, Fatemeh & Ghodsi, Ali & Parand, Kourosh, 2021. "Fractional Chebyshev deep neural network (FCDNN) for solving differential models," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Hai & Chen, Xinbin & Ye, Renyu & Stamova, Ivanka & Cao, Jinde, 2023. "Adaptive quasi-synchronization analysis for Caputo delayed Cohen–Grossberg neural networks," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 212(C), pages 49-65.
    2. Chen, Dazhao & Zhang, Zhengqiu, 2022. "Finite-time synchronization for delayed BAM neural networks by the approach of the same structural functions," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    3. Peng, Qiu & Jian, Jigui, 2023. "Synchronization analysis of fractional-order inertial-type neural networks with time delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 205(C), pages 62-77.
    4. Rajchakit, G. & Sriraman, R. & Lim, C.P. & Unyong, B., 2022. "Existence, uniqueness and global stability of Clifford-valued neutral-type neural networks with time delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 508-527.
    5. Luo, Lingao & Li, Lulu & Huang, Wei, 2024. "Asymptotic stability of fractional-order Hopfield neural networks with event-triggered delayed impulses and switching effects," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 219(C), pages 491-504.
    6. Zonglun Li & Yuliya Tsybina & Susanna Gordleeva & Alexey Zaikin, 2022. "Impact of Astrocytic Coverage of Synapses on the Short-Term Memory of a Computational Neuron-Astrocyte Network," Mathematics, MDPI, vol. 10(18), pages 1-20, September.
    7. Oliveira, José J., 2022. "Global stability criteria for nonlinear differential systems with infinite delay and applications to BAM neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    8. Iswarya, M. & Raja, R. & Cao, J. & Niezabitowski, M. & Alzabut, J. & Maharajan, C., 2022. "New results on exponential input-to-state stability analysis of memristor based complex-valued inertial neural networks with proportional and distributed delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 440-461.
    9. Gan, Binbin & Chen, Hao & Xu, Biao & Kang, Wei, 2023. "A norm stability condition of neutral-type Cohen-Grossberg neural networks with multiple time delays," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    10. Zhang, Hai & Cheng, Yuhong & Zhang, Weiwei & Zhang, Hongmei, 2023. "Time-dependent and Caputo derivative order-dependent quasi-uniform synchronization on fuzzy neural networks with proportional and distributed delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 846-857.
    11. Xiao, Lin & Li, Linju & Cao, Penglin & He, Yongjun, 2023. "A fixed-time robust controller based on zeroing neural network for generalized projective synchronization of chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    12. Zhu, Ruiyuan & Guo, Yingxin & Wang, Fei, 2020. "Quasi-synchronization of heterogeneous neural networks with distributed and proportional delays via impulsive control," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    13. Zhang, Yuan & Cao, Jinde & Liu, Lixia & Liu, Haihong & Li, Zhouhong, 2024. "Complex role of time delay in dynamical coordination of neural progenitor fate decisions mediated by Notch pathway," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    14. Zheng, Wei & Zhang, Zhiming & Lam, Hak-Keung & Sun, Fuchun & Wen, Shuhuan, 2023. "LMIs-based exponential stabilization for interval delay systems via congruence transformation: Application in chaotic Lorenz system," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    15. Zhang, Zhengqiu & Yang, Zhen, 2023. "Asymptotic stability for quaternion-valued fuzzy BAM neural networks via integral inequality approach," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    16. Shan, Yaonan & She, Kun & Zhong, Shouming & Zhong, Qishui & Shi, Kaibo & Zhao, Can, 2018. "Exponential stability and extended dissipativity criteria for generalized discrete-time neural networks with additive time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 333(C), pages 145-168.
    17. Zhen Yang & Zhengqiu Zhang, 2022. "Finite-Time Synchronization Analysis for BAM Neural Networks with Time-Varying Delays by Applying the Maximum-Value Approach with New Inequalities," Mathematics, MDPI, vol. 10(5), pages 1-16, March.
    18. Li, Peiluan & Gao, Rong & Xu, Changjin & Ahmad, Shabir & Li, Ying & Akgül, Ali, 2023. "Bifurcation behavior and PDγ control mechanism of a fractional delayed genetic regulatory model," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    19. Zhang, Hai & Cheng, Yuhong & Zhang, Hongmei & Zhang, Weiwei & Cao, Jinde, 2022. "Hybrid control design for Mittag-Leffler projective synchronization on FOQVNNs with multiple mixed delays and impulsive effects," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 197(C), pages 341-357.
    20. Jinlong Shu & Lianglin Xiong & Tao Wu & Zixin Liu, 2019. "Stability Analysis of Quaternion-Valued Neutral-Type Neural Networks with Time-Varying Delay," Mathematics, MDPI, vol. 7(1), pages 1-23, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:208:y:2023:i:c:p:424-443. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.