IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i15p3273-d1202392.html
   My bibliography  Save this article

Design of a Fixed-Time Stabilizer for Uncertain Chaotic Systems Subject to External Disturbances

Author

Listed:
  • Amir Rezaie

    (Department of Mathematics, Faculty of Sciences, University of Zanjan, Zanjan 45371-38791, Iran)

  • Saleh Mobayen

    (Department of Electrical Engineering, Faculty of Engineering, University of Zanjan, Zanjan 45371-38791, Iran
    Graduate School of Intelligent Data Science, National Yunlin University of Science and Technology, Douliou 64002, Yunlin, Taiwan)

  • Mohammad Reza Ghaemi

    (Department of Mathematics, Faculty of Sciences, University of Zanjan, Zanjan 45371-38791, Iran)

  • Afef Fekih

    (Department of Electrical and Computer Engineering, University of Louisiana at Lafayette, Lafayette, LA 70504, USA)

  • Anton Zhilenkov

    (Department of Cyber-Physical Systems, St. Petersburg State Marine Technical University, 190121 Saint-Petersburg, Russia)

Abstract

This paper addresses the fixed-time stability problem of chaotic systems with internal uncertainties and external disturbances. To this end, new sliding-mode surfaces are introduced to design fixed-time controllers for the stabilization of perturbed chaotic systems. First, the required conditions for deriving fixed-time stability are determined. Then, using the obtained stability theorems and sliding mode techniques, the controllers are synthesized. The proposed controller enables the convergence of the trajectories of the chaotic system to the origin in finite time, independently of the initial conditions. The performance of the proposed approach is assessed using a simulation study of a PMSM system and the Matouk system. Among the advantages of the proposed controller are its robustness to external disturbances and the boundedness of the settling time to a constant value for any initial condition.

Suggested Citation

  • Amir Rezaie & Saleh Mobayen & Mohammad Reza Ghaemi & Afef Fekih & Anton Zhilenkov, 2023. "Design of a Fixed-Time Stabilizer for Uncertain Chaotic Systems Subject to External Disturbances," Mathematics, MDPI, vol. 11(15), pages 1-14, July.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:15:p:3273-:d:1202392
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/15/3273/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/15/3273/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhoubin Sheng & Chunbiao Li & Yikai Gao & Zhinan Li & Lin Chai, 2023. "A Switchable Chaotic Oscillator with Multiscale Amplitude/Frequency Control," Mathematics, MDPI, vol. 11(3), pages 1-11, January.
    2. Runzi Luo & Meichun Huang & Haipeng Su, 2019. "Robust Control and Synchronization of 3-D Uncertain Fractional-Order Chaotic Systems with External Disturbances via Adding One Power Integrator Control," Complexity, Hindawi, vol. 2019, pages 1-11, May.
    3. Zizhao Xie & Jingru Sun & Yiping Tang & Xin Tang & Oluyomi Simpson & Yichuang Sun, 2023. "A K-SVD Based Compressive Sensing Method for Visual Chaotic Image Encryption," Mathematics, MDPI, vol. 11(7), pages 1-20, March.
    4. Luo, Danfeng & Tian, Mengquan & Zhu, Quanxin, 2022. "Some results on finite-time stability of stochastic fractional-order delay differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shichao Jia & Cheng Hu & Haijun Jiang, 2024. "Fixed/Preassigned-Time Synchronization of Fuzzy Memristive Fully Quaternion-Valued Neural Networks Based on Event-Triggered Control," Mathematics, MDPI, vol. 12(9), pages 1-31, April.
    2. Shichao Jia & Cheng Hu & Haijun Jiang, 2023. "Fixed/Preassigned-Time Synchronization of Fully Quaternion-Valued Cohen–Grossberg Neural Networks with Generalized Time Delay," Mathematics, MDPI, vol. 11(23), pages 1-20, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yuan & Cao, Jinde & Liu, Lixia & Liu, Haihong & Li, Zhouhong, 2024. "Complex role of time delay in dynamical coordination of neural progenitor fate decisions mediated by Notch pathway," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    2. Dhayal, Rajesh & Zhu, Quanxin, 2023. "Stability and controllability results of ψ-Hilfer fractional integro-differential systems under the influence of impulses," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    3. Rhaima, Mohamed, 2023. "Ulam–Hyers stability for an impulsive Caputo–Hadamard fractional neutral stochastic differential equations with infinite delay," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 210(C), pages 281-295.
    4. Mengyao Li & Xianwen Fang & Asimeng Ernest, 2023. "A Color Image Encryption Method Based on Dynamic Selection Chaotic System and Singular Value Decomposition," Mathematics, MDPI, vol. 11(15), pages 1-27, July.
    5. Qingye Huang & Linqing Huang & Shuting Cai & Xiaoming Xiong & Hui Zhang, 2023. "On a Symmetric Image Cryptosystem Based on a Novel One-Dimensional Chaotic System and Banyan Network," Mathematics, MDPI, vol. 11(21), pages 1-21, October.
    6. Su, Haipeng & Luo, Runzi & Huang, Meichun & Fu, Jiaojiao, 2022. "Practical fixed time active control scheme for synchronization of a class of chaotic neural systems with external disturbances," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    7. Moualkia, Seyfeddine, 2023. "Mathematical analysis of new variant Omicron model driven by Lévy noise and with variable-order fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    8. Jiang, Ziling & Huang, Fan & Shao, Haijian & Cai, Shuiming & Lu, Xiaobo & Jiang, Shengqin, 2023. "Time-varying finite-time synchronization analysis of attack-induced uncertain neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    9. García-Grimaldo, Claudio & Campos-Cantón, Eric, 2023. "Exploring a family of Bernoulli-like shift chaotic maps and its amplitude control," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    10. Liu, Zhiguang & Zhu, Quanxin, 2023. "Ultimate boundedness of impulsive stochastic delay differential equations with delayed impulses," Statistics & Probability Letters, Elsevier, vol. 199(C).
    11. Huang, Jizhao & Luo, Danfeng & Zhu, Quanxin, 2023. "Relatively exact controllability for fractional stochastic delay differential equations of order κ∈(1,2]," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    12. Su, Haipeng & Luo, Runzi & Fu, Jiaojiao & Huang, Meichun, 2022. "Fixed time control and synchronization of a class of uncertain chaotic systems with disturbances via passive control method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 198(C), pages 474-493.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:15:p:3273-:d:1202392. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.