IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v178y2024ics0960077923012638.html
   My bibliography  Save this article

A comprehensive survey on image encryption: Taxonomy, challenges, and future directions

Author

Listed:
  • SaberiKamarposhti, Morteza
  • Ghorbani, Amirabbas
  • Yadollahi, Mehdi

Abstract

Image encryption is a critical component of modern data security, ensuring the confidentiality, integrity, and privacy of sensitive visual content. In this paper, we present a comprehensive survey on image encryption, exploring various encryption algorithms, their strengths, weaknesses, and real-world applications. We begin by providing a background on image encryption, highlighting its importance in safeguarding image data from unauthorized access and tampering. We discuss symmetric, asymmetric, and hybrid encryption techniques, analyzing their suitability for different scenarios. Evaluation metrics for assessing encryption algorithms are discussed, emphasizing the importance of selecting appropriate metrics to measure security and performance. Additionally, we explore the challenges faced in image encryption, such as key management and computational complexity. The survey also delves into potential future directions in image encryption, including robustness against cryptanalysis, quantum image encryption, and multimedia encryption. Furthermore, we discuss the importance of image encryption in various industries, such as military, healthcare, finance, journalism, and intellectual property protection. Real-world use cases are presented, highlighting scenarios where image encryption is crucial for maintaining confidentiality, integrity, and privacy. Finally, we conclude by summarizing the survey findings and identifying potential areas for further research and improvement in image encryption. This comprehensive survey serves as a valuable resource for researchers, practitioners, and decision-makers in the field of image security, facilitating the development of more secure and efficient image encryption solutions to meet the increasing demand for data protection and privacy in the digital age.

Suggested Citation

  • SaberiKamarposhti, Morteza & Ghorbani, Amirabbas & Yadollahi, Mehdi, 2024. "A comprehensive survey on image encryption: Taxonomy, challenges, and future directions," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
  • Handle: RePEc:eee:chsofr:v:178:y:2024:i:c:s0960077923012638
    DOI: 10.1016/j.chaos.2023.114361
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923012638
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.114361?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Xin & Shi, Hang & Ji’e, Musha & Duan, Shukai & Wang, Lidan, 2023. "A novel image compression and encryption scheme based on conservative chaotic system and DNA method," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    2. Wang, Xingyuan & Liu, Cheng & Jiang, Donghua, 2022. "Visually meaningful image encryption scheme based on new-designed chaotic map and random scrambling diffusion strategy," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    3. Ahmad, Israr, 2021. "A Lyapunov-based direct adaptive controller for the suppression and synchronization of a perturbed nuclear spin generator chaotic system," Applied Mathematics and Computation, Elsevier, vol. 395(C).
    4. Dong, Wenlong & Li, Qiliang & Tang, Yiwen, 2021. "Image encryption-then-transmission combining random sub-block scrambling and loop DNA algorithm in an optical chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    5. Lai, Qiang & Yang, Liang & Liu, Yuan, 2022. "Design and realization of discrete memristive hyperchaotic map with application in image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    6. Liu, Xilin & Tong, Xiaojun & Zhang, Miao & Wang, Zhu, 2023. "A highly secure image encryption algorithm based on conservative hyperchaotic system and dynamic biogenetic gene algorithms," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    7. Biban, Geeta & Chugh, Renu & Panwar, Anju, 2023. "Image encryption based on 8D hyperchaotic system using Fibonacci Q-Matrix," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    8. Lin, Hairong & Wang, Chunhua & Sun, Jingru & Zhang, Xin & Sun, Yichuang & Iu, Herbert H.C., 2023. "Memristor-coupled asymmetric neural networks: Bionic modeling, chaotic dynamics analysis and encryption application," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    9. Yu, Jinwei & Xie, Wei & Zhong, Zhenyu & Wang, Huan, 2022. "Image encryption algorithm based on hyperchaotic system and a new DNA sequence operation," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    10. Toktas, Abdurrahim & Erkan, Uğur & Gao, Suo & Pak, Chanil, 2024. "A robust bit-level image encryption based on Bessel map," Applied Mathematics and Computation, Elsevier, vol. 462(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hairong Lin & Chunhua Wang & Fei Yu & Jingru Sun & Sichun Du & Zekun Deng & Quanli Deng, 2023. "A Review of Chaotic Systems Based on Memristive Hopfield Neural Networks," Mathematics, MDPI, vol. 11(6), pages 1-18, March.
    2. Cao, Hongli & Wang, Yu & Banerjee, Santo & Cao, Yinghong & Mou, Jun, 2024. "A discrete Chialvo–Rulkov neuron network coupled with a novel memristor model: Design, Dynamical analysis, DSP implementation and its application," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    3. Long, Guoqiang & Chai, Xiuli & Gan, Zhihua & Jiang, Donghua & He, Xin & Sun, Mengge, 2023. "Exploiting one-dimensional exponential Chebyshev chaotic map and matching embedding for visually meaningful image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    4. Huang, Yuanyuan & Huang, Huijun & Huang, Yunchang & Wang, Yinhe & Yu, Fei & Yu, Beier & Liu, Chenghao, 2024. "Asymptotic shape synchronization in three-dimensional chaotic systems and its application in color image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    5. Xu, Quan & Wang, Yiteng & Chen, Bei & Li, Ze & Wang, Ning, 2023. "Firing pattern in a memristive Hodgkin–Huxley circuit: Numerical simulation and analog circuit validation," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    6. Zhang, Jie & Zuo, Jiangang & Wang, Meng & Guo, Yan & Xie, Qinggang & Hou, Jinyou, 2024. "Design and application of multiscroll chaotic attractors based on a novel multi-segmented memristor," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    7. Adhira, B. & Nagamani, G., 2023. "Exponentially finite-time dissipative discrete state estimator for delayed competitive neural networks via semi-discretization approach," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    8. Li, Yongxin & Li, Chunbiao & Zhong, Qing & Zhao, Yibo & Yang, Yong, 2024. "Coexisting hollow chaotic attractors within a steep parameter interval," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    9. Wu, Huagan & Gu, Jinxiang & Guo, Yixuan & Chen, Mo & Xu, Quan, 2024. "Biphasic action potentials in an individual cellular neural network cell," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    10. Ahmed Amirul Arefin & Khairul Nisak Binti Md. Hasan & Mohammad Lutfi Othman & Mohd Fakhizan Romlie & Nordin Saad & Nursyarizal Bin Mohd Nor & Mohd Faris Abdullah, 2021. "A Novel Island Detection Threshold Setting Using Phasor Measurement Unit Voltage Angle in a Distribution Network," Energies, MDPI, vol. 14(16), pages 1-14, August.
    11. Zou, Chengye & Li, Haifeng & Zhang, Xuncai & Liu, Yunong & Shang, Yubao & Zhou, Chuangjun, 2024. "Target localization image encryption of wind turbines based on DNA strand replacement rule," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    12. Li, Fangyuan & Chen, Zhuguan & Bao, Han & Bai, Lianfa & Bao, Bocheng, 2024. "Chaos and bursting patterns in two-neuron Hopfield neural network and analog implementation," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    13. Lai, Qiang & Hua, Hanqiang & Zhao, Xiao-Wen & Erkan, Uǧur & Toktas, Abdurrahim, 2023. "Image encryption using fission diffusion process and a new hyperchaotic map," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    14. Xiaoqiang Zhang & Mi Liu & Xiaochang Yang, 2023. "Color Image Encryption Algorithm Based on Cross-Spiral Transformation and Zone Diffusion," Mathematics, MDPI, vol. 11(14), pages 1-28, July.
    15. Lai, Qiang & Chen, Zhijie, 2023. "Grid-scroll memristive chaotic system with application to image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    16. Fei Yu & Wuxiong Zhang & Xiaoli Xiao & Wei Yao & Shuo Cai & Jin Zhang & Chunhua Wang & Yi Li, 2023. "Dynamic Analysis and FPGA Implementation of a New, Simple 5D Memristive Hyperchaotic Sprott-C System," Mathematics, MDPI, vol. 11(3), pages 1-15, January.
    17. Yan, Shaohui & Jiang, Defeng & Cui, Yu & Zhang, Hanbing & Li, Lin & Jiang, Jiawei, 2024. "A fractional-order hyperchaotic system that is period in integer-order case and its application in a novel high-quality color image encryption algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    18. Lai, Qiang & Hu, Genwen & Erkan, Uǧur & Toktas, Abdurrahim, 2023. "High-efficiency medical image encryption method based on 2D Logistic-Gaussian hyperchaotic map," Applied Mathematics and Computation, Elsevier, vol. 442(C).
    19. Jia, Junen & Wang, Chunni & Zhang, Xiaofeng & Zhu, Zhigang, 2024. "Energy and self-adaption in a memristive map neuron," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    20. Lin, Hairong & Wang, Chunhua & Du, Sichun & Yao, Wei & Sun, Yichuang, 2023. "A family of memristive multibutterfly chaotic systems with multidirectional initial-based offset boosting," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:178:y:2024:i:c:s0960077923012638. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.