IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v395y2021ics0096300320308110.html
   My bibliography  Save this article

A Lyapunov-based direct adaptive controller for the suppression and synchronization of a perturbed nuclear spin generator chaotic system

Author

Listed:
  • Ahmad, Israr

Abstract

This article designs and synthesizes a new Lyapunov-based robust direct-adaptive controller (RDAC) and investigates the control and synchronization of chaos in the nuclear spin generator chaotic (NSGC) system. The inevitable time-varying external disturbances and model uncertainties perturb the NSGC system. The nonlinear terms, external disturbances, model uncertainties, and plant's parameters are unknown and bounded. Avoiding the cancelation of the nonlinear terms of the plant by the controller makes the closed-loop robust stable in the presence of unknown parametric uncertainties; this concept blooms base for efficient control law design. The proposed RDAC eradicates the effects of the time-varying unknwon external disturbances and model uncertainties and accomplishes quick and smooth convergence of the state varaible (error vector) trajectories to the origin with reduced oscillations. Based on the Lyapunov function principle, the article describes a detailed analysis of the closed-loop stability. It provides suitable adaptive laws that estimate the upper bound of unknown controller parameters, external disturbances, and model uncertainties. The computer simulation results endorse the theoretical analysis, and the comparative study highlights the benefits.

Suggested Citation

  • Ahmad, Israr, 2021. "A Lyapunov-based direct adaptive controller for the suppression and synchronization of a perturbed nuclear spin generator chaotic system," Applied Mathematics and Computation, Elsevier, vol. 395(C).
  • Handle: RePEc:eee:apmaco:v:395:y:2021:i:c:s0096300320308110
    DOI: 10.1016/j.amc.2020.125858
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300320308110
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2020.125858?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shen, Yafei & Shi, Jinyao & Cai, Shuiming, 2020. "Pinning synchronization of weighted bipartite networks with time-varying delays via aperiodic intermittent control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    2. Wang, Yan-Wu & Guan, Zhi-Hong, 2006. "Generalized synchronization of continuous chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 27(1), pages 97-101.
    3. Molaei, M.R. & Umut, Ömür, 2008. "Generalized synchronization of nuclear spin generator system," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 227-232.
    4. Kemih, Karim, 2009. "Control of nuclear spin generator system based on passive control," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1897-1901.
    5. Harshavarthini, S. & Sakthivel, R. & Kong, F., 2020. "Finite-time synchronization of chaotic coronary artery system with input time-varying delay," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    6. Huang, Yao & Bao, Haibo, 2020. "Master-slave synchronization of complex-valued delayed chaotic Lur’e systems with sampled-data control," Applied Mathematics and Computation, Elsevier, vol. 379(C).
    7. Liu, Hongjun & Zhang, Yingqian & Kadir, Abdurahman & Xu, Yanqiu, 2019. "Image encryption using complex hyper chaotic system by injecting impulse into parameters," Applied Mathematics and Computation, Elsevier, vol. 360(C), pages 83-93.
    8. Wang, Jing & Ru, Tingting & Xia, Jianwei & Wei, Yunliang & Wang, Zhen, 2019. "Finite-time synchronization for complex dynamic networks with semi-Markov switching topologies: An H∞ event-triggered control scheme," Applied Mathematics and Computation, Elsevier, vol. 356(C), pages 235-251.
    9. Yan, Lizhao & Liu, Jian & Xu, Fei & Teo, Kok Lay & Lai, Mingyong, 2021. "Control and synchronization of hyperchaos in digital manufacturing supply chain," Applied Mathematics and Computation, Elsevier, vol. 391(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmed Amirul Arefin & Khairul Nisak Binti Md. Hasan & Mohammad Lutfi Othman & Mohd Fakhizan Romlie & Nordin Saad & Nursyarizal Bin Mohd Nor & Mohd Faris Abdullah, 2021. "A Novel Island Detection Threshold Setting Using Phasor Measurement Unit Voltage Angle in a Distribution Network," Energies, MDPI, vol. 14(16), pages 1-14, August.
    2. SaberiKamarposhti, Morteza & Ghorbani, Amirabbas & Yadollahi, Mehdi, 2024. "A comprehensive survey on image encryption: Taxonomy, challenges, and future directions," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yingnan, 2019. "Controller synthesis for continuous T-S fuzzy systems with partly immeasurable premise variables," Applied Mathematics and Computation, Elsevier, vol. 363(C), pages 1-1.
    2. Shoreh, A.A.-H. & Kuznetsov, N.V. & Mokaev, T.N., 2022. "New adaptive synchronization algorithm for a general class of complex hyperchaotic systems with unknown parameters and its application to secure communication," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    3. Nguyen, Ngoc Hoai An & Kim, Sung Hyun, 2021. "Asynchronous dissipative control design for semi-Markovian jump systems with uncertain probability distribution functions of sojourn-time," Applied Mathematics and Computation, Elsevier, vol. 397(C).
    4. Xu, Yuhua & Zhou, Wuneng & Fang, Jian-an, 2009. "Hybrid dislocated control and general hybrid projective dislocated synchronization for the modified Lü chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1305-1315.
    5. Liu, Lizhi & Wang, Yinhe & Gao, Zilin, 2020. "Tracking control for the dynamic links of discrete-time complex dynamical network via state observer," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    6. Wu, Tianyu & Huang, Xia & Chen, Xiangyong & Wang, Jing, 2020. "Sampled-data H∞ exponential synchronization for delayed semi-Markov jump CDNs: A looped-functional approach," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    7. Wang, Bo & Cheng, Jun & Zhou, Xia, 2020. "A multiple hierarchical structure strategy to quantized control of Markovian switching systems," Applied Mathematics and Computation, Elsevier, vol. 373(C).
    8. Ge, Zheng-Ming & Chang, Ching-Ming, 2009. "Nonlinear generalized synchronization of chaotic systems by pure error dynamics and elaborate nondiagonal Lyapunov function," Chaos, Solitons & Fractals, Elsevier, vol. 39(4), pages 1959-1974.
    9. Wang, Yuxiao & Cao, Yuting & Guo, Zhenyuan & Wen, Shiping, 2020. "Passivity and passification of memristive recurrent neural networks with multi-proportional delays and impulse," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    10. Singh, Piyush Pratap & Singh, Jay Prakash & Roy, B.K., 2014. "Synchronization and anti-synchronization of Lu and Bhalekar–Gejji chaotic systems using nonlinear active control," Chaos, Solitons & Fractals, Elsevier, vol. 69(C), pages 31-39.
    11. Fan, Gaofeng & Ma, Yuechao, 2023. "Fault-tolerant fixed/preassigned-time synchronization control of uncertain singularly perturbed complex networks with time-varying delay and stochastic disturbances," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    12. Zheng, Jun & Hu, Hanping & Ming, Hao & Zhang, Yanxia, 2021. "Design of a hybrid model for construction of digital chaos and local synchronization," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    13. Li, Guo-Hui, 2007. "Modified projective synchronization of chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1786-1790.
    14. Al-Sawalha, Ayman, 2009. "Chaos anti-synchronization of two non-identical chaotic systems with known or fully unknown parameters," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1926-1932.
    15. Chu, Xiaoyan & Xu, Liguang & Hu, Hongxiao, 2020. "Exponential quasi-synchronization of conformable fractional-order complex dynamical networks," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    16. Takhi, Hocine & Kemih, Karim & Moysis, Lazaros & Volos, Christos, 2021. "Passivity based sliding mode control and synchronization of a perturbed uncertain unified chaotic system," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 150-169.
    17. Guo, Pengteng & Shi, Qiqing & Jian, Zeng & Zhang, Jing & Ding, Qun & Yan, Wenhao, 2024. "An intelligent controller of homo-structured chaotic systems under noisy conditions and applications in image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    18. Suriguga, Ma & Kao, Yonggui & Hyder, Abd-Allah, 2020. "Uniform stability of delayed impulsive reaction–diffusion systems," Applied Mathematics and Computation, Elsevier, vol. 372(C).
    19. Martínez-Guerra, Rafael & Mata-Machuca, Juan L., 2014. "Generalized synchronization via the differential primitive element," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 848-857.
    20. Xu, Changjin & Liao, Maoxin & Li, Peiluan & Guo, Ying & Xiao, Qimei & Yuan, Shuai, 2019. "Influence of multiple time delays on bifurcation of fractional-order neural networks," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 565-582.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:395:y:2021:i:c:s0096300320308110. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.