IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i19p4166-d1253692.html
   My bibliography  Save this article

Bifurcation, Hidden Chaos, Entropy and Control in Hénon-Based Fractional Memristor Map with Commensurate and Incommensurate Orders

Author

Listed:
  • Mayada Abualhomos

    (Applied Science Research Center (ASRC), Applied Science Private University, Amman 11942, Jordan)

  • Abderrahmane Abbes

    (Laboratory of Mathematics, Dynamics and Modelization, Badji Mokhtar-Annaba University, Annaba 23000, Algeria)

  • Gharib Mousa Gharib

    (Department of Mathematics, Faculty of Science, Zarqa University, Zarqa 13110, Jordan)

  • Abdallah Shihadeh

    (Department of Mathematics, Faculty of Science, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan)

  • Maha S. Al Soudi

    (Department of Basic Scientific Sciences, Applied Science Private University, Amman 11931, Jordan)

  • Ahmed Atallah Alsaraireh

    (Department of Computer Information Systems, The University of Jordan, Amman 11942, Jordan)

  • Adel Ouannas

    (Department of Mathematics and Computer Science, University of Larbi Ben M’hidi, Oum El Bouaghi 04000, Algeria)

Abstract

In this paper, we present an innovative 3D fractional Hénon-based memristor map and conduct an extensive exploration and analysis of its dynamic behaviors under commensurate and incommensurate orders. The study employs diverse numerical techniques, such as visualizing phase portraits, analyzing Lyapunov exponents, plotting bifurcation diagrams, and applying the sample entropy test to assess the complexity and validate the chaotic characteristics. However, since the proposed fractional map has no fixed points, the outcomes reveal that the map can exhibit a wide range of hidden dynamical behaviors. This phenomenon significantly augments the complexity of the fractal structure inherent to the chaotic attractors. Moreover, we introduce nonlinear controllers designed for stabilizing and synchronizing the proposed fractional Hénon-based memristor map. The research emphasizes the system’s sensitivity to fractional-order parameters, resulting in the emergence of distinct dynamic patterns. The memristor-based chaotic map exhibits rich and intricate behavior, making it a captivating and significant area of investigation.

Suggested Citation

  • Mayada Abualhomos & Abderrahmane Abbes & Gharib Mousa Gharib & Abdallah Shihadeh & Maha S. Al Soudi & Ahmed Atallah Alsaraireh & Adel Ouannas, 2023. "Bifurcation, Hidden Chaos, Entropy and Control in Hénon-Based Fractional Memristor Map with Commensurate and Incommensurate Orders," Mathematics, MDPI, vol. 11(19), pages 1-19, October.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:19:p:4166-:d:1253692
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/19/4166/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/19/4166/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lai, Qiang & Lai, Cong & Zhang, Hui & Li, Chunbiao, 2022. "Hidden coexisting hyperchaos of new memristive neuron model and its application in image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    2. Peng, Yuexi & Liu, Jun & He, Shaobo & Sun, Kehui, 2023. "Discrete fracmemristor-based chaotic map by Grunwald–Letnikov difference and its circuit implementation," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    3. Khennaoui, Amina-Aicha & Ouannas, Adel & Bendoukha, Samir & Grassi, Giuseppe & Lozi, René Pierre & Pham, Viet-Thanh, 2019. "On fractional–order discrete–time systems: Chaos, stabilization and synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 150-162.
    4. Liu, Xinkang & Sun, Kehui & Wang, Huihai & He, Shaobo, 2023. "A class of novel discrete memristive chaotic map," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    5. Lin, Hairong & Wang, Chunhua & Sun, Jingru & Zhang, Xin & Sun, Yichuang & Iu, Herbert H.C., 2023. "Memristor-coupled asymmetric neural networks: Bionic modeling, chaotic dynamics analysis and encryption application," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Jie & Li, Chunbiao & Zhang, Qian & Zhang, Xin & Wu, Zhihao & Zhong, Haidong & Liu, Peiqiao & Liu, Zuohua & Tao, Changyuan & Huang, Keyu & Li, Jiaxing & Zheng, Guocan, 2024. "A memristive hyperchaotic oscillator with complete control and its application in the electrolysis of manganese," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    2. Xu, Quan & Wang, Yiteng & Chen, Bei & Li, Ze & Wang, Ning, 2023. "Firing pattern in a memristive Hodgkin–Huxley circuit: Numerical simulation and analog circuit validation," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    3. Huang, Keyu & Li, Chunbiao & Cen, Xiaoliang & Chen, Guanrong, 2024. "Constructing chaotic oscillators with memory components," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    4. Othman Abdullah Almatroud & Viet-Thanh Pham & Giuseppe Grassi & Mohammad Alshammari & Sahar Albosaily & Van Van Huynh, 2023. "Design of High-Dimensional Maps with Sine Terms," Mathematics, MDPI, vol. 11(17), pages 1-10, August.
    5. Zhang, Jianlin & Bao, Han & Yu, Xihong & Chen, Bei, 2024. "Heterogeneous coexistence of extremely many attractors in adaptive synapse neuron considering memristive EMI," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    6. SaberiKamarposhti, Morteza & Ghorbani, Amirabbas & Yadollahi, Mehdi, 2024. "A comprehensive survey on image encryption: Taxonomy, challenges, and future directions," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    7. Zhang, Jie & Zuo, Jiangang & Wang, Meng & Guo, Yan & Xie, Qinggang & Hou, Jinyou, 2024. "Design and application of multiscroll chaotic attractors based on a novel multi-segmented memristor," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    8. Tareq Hamadneh & Abderrahmane Abbes & Hassan Al-Tarawneh & Gharib Mousa Gharib & Wael Mahmoud Mohammad Salameh & Maha S. Al Soudi & Adel Ouannas, 2023. "On Chaos and Complexity Analysis for a New Sine-Based Memristor Map with Commensurate and Incommensurate Fractional Orders," Mathematics, MDPI, vol. 11(20), pages 1-16, October.
    9. Tareq Hamadneh & Souad Bensid Ahmed & Hassan Al-Tarawneh & Omar Alsayyed & Gharib Mousa Gharib & Maha S. Al Soudi & Abderrahmane Abbes & Adel Ouannas, 2023. "The New Four-Dimensional Fractional Chaotic Map with Constant and Variable-Order: Chaos, Control and Synchronization," Mathematics, MDPI, vol. 11(20), pages 1-19, October.
    10. Dutta, Maitreyee & Roy, Binoy Krishna, 2020. "A new fractional-order system displaying coexisting multiwing attractors; its synchronisation and circuit simulation," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    11. Adhira, B. & Nagamani, G., 2023. "Exponentially finite-time dissipative discrete state estimator for delayed competitive neural networks via semi-discretization approach," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    12. Peng, Yuexi & Liu, Jun & He, Shaobo & Sun, Kehui, 2023. "Discrete fracmemristor-based chaotic map by Grunwald–Letnikov difference and its circuit implementation," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    13. Hairong Lin & Chunhua Wang & Fei Yu & Jingru Sun & Sichun Du & Zekun Deng & Quanli Deng, 2023. "A Review of Chaotic Systems Based on Memristive Hopfield Neural Networks," Mathematics, MDPI, vol. 11(6), pages 1-18, March.
    14. Ding, Dawei & Wang, Wei & Yang, Zongli & Hu, Yongbing & Wang, Jin & Wang, Mouyuan & Niu, Yan & Zhu, Haifei, 2023. "An n-dimensional modulo chaotic system with expected Lyapunov exponents and its application in image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    15. Yuan, Fang & Xing, Guibin & Deng, Yue, 2023. "Flexible cascade and parallel operations of discrete memristor," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    16. Pakhare, Sumit S. & Bhalekar, Sachin & Gade, Prashant M., 2022. "Synchronization in coupled integer and fractional-order maps," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    17. Bezerra, João Inácio Moreira & Machado, Gustavo & Molter, Alexandre & Soares, Rafael Iankowski & Camargo, Vinícius, 2023. "A novel simultaneous permutation–diffusion image encryption scheme based on a discrete space map," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    18. Ran, Jie & Li, Yu-Qin & Xiong, Yi-Bin, 2022. "On the dynamics of fractional q-deformation chaotic map," Applied Mathematics and Computation, Elsevier, vol. 424(C).
    19. Wang, Lingyu & Sun, Kehui & Peng, Yuexi & He, Shaobo, 2020. "Chaos and complexity in a fractional-order higher-dimensional multicavity chaotic map," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    20. Xu, Quan & Wang, Kai & Chen, Mo & Parastesh, Fatemeh & Wang, Ning, 2024. "Bursting and spiking activities in a Wilson neuron circuit with memristive sodium and potassium ion channels," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:19:p:4166-:d:1253692. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.