IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i16p4877-d611524.html
   My bibliography  Save this article

A Novel Island Detection Threshold Setting Using Phasor Measurement Unit Voltage Angle in a Distribution Network

Author

Listed:
  • Ahmed Amirul Arefin

    (Department of Electrical and Electronics Engineering, Universiti Teknologi PETRONAS, Perak 32610, Malaysia)

  • Khairul Nisak Binti Md. Hasan

    (Department of Electrical and Electronics Engineering, Universiti Teknologi PETRONAS, Perak 32610, Malaysia)

  • Mohammad Lutfi Othman

    (Advanced Lightening Power and Energy Research (ALPER), Department of Electrical and Electronics Engineering, Faculty of Engineering, Universiti Putra Malaysia, Selangor 43400, Malaysia)

  • Mohd Fakhizan Romlie

    (Department of Electrical and Electronics Engineering, Universiti Teknologi PETRONAS, Perak 32610, Malaysia)

  • Nordin Saad

    (Department of Electrical and Electronics Engineering, Universiti Teknologi PETRONAS, Perak 32610, Malaysia)

  • Nursyarizal Bin Mohd Nor

    (Department of Electrical and Electronics Engineering, Universiti Teknologi PETRONAS, Perak 32610, Malaysia)

  • Mohd Faris Abdullah

    (Department of Electrical and Electronics Engineering, Xiamen University Malaysia, Sepang 43900, Malaysia)

Abstract

Islanding detection needs are becoming a pivotal constituent of the power system, since the penetration of distributed generators in the utility power system is continually increasing. Accurate threshold setting is an integral part of the island detection scheme since an inappropriate threshold might cause a hazardous situation. This study looked at the islanding conditions as well as two transient faults, such as a single line to ground fault and a three-phase balance fault, to assess the event distinguishing ability of the proposed method. Therefore, the goal of this research was to determine the threshold of the island if the distributed generator (DG) capacity is greater than the connected feeder load, which is the over-frequency island condition, and if the DG capacity is less than the connected feeder load, which is the under-frequency island condition. The significance of this research work is to propose a new island detection threshold setting method using the slip angle and acceleration angle that comes from phasor measurement unit (PMU) voltage angle data. The proposed threshold setting method was simulated in the PowerWorld simulator on a modified IEEE 30 bus system equipped with DG. There are three different interconnection scenarios in the test system and the performance of the proposed method shows that getting the island threshold for all the scenarios requires a single time step or 20 mile seconds after incepting an island into the network. In addition, it can distinguish between the real islanding threshold and the transient faults threshold.

Suggested Citation

  • Ahmed Amirul Arefin & Khairul Nisak Binti Md. Hasan & Mohammad Lutfi Othman & Mohd Fakhizan Romlie & Nordin Saad & Nursyarizal Bin Mohd Nor & Mohd Faris Abdullah, 2021. "A Novel Island Detection Threshold Setting Using Phasor Measurement Unit Voltage Angle in a Distribution Network," Energies, MDPI, vol. 14(16), pages 1-14, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:4877-:d:611524
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/16/4877/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/16/4877/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ahmad, Israr, 2021. "A Lyapunov-based direct adaptive controller for the suppression and synchronization of a perturbed nuclear spin generator chaotic system," Applied Mathematics and Computation, Elsevier, vol. 395(C).
    2. Khamis, Aziah & Shareef, Hussain & Bizkevelci, Erdal & Khatib, Tamer, 2013. "A review of islanding detection techniques for renewable distributed generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 483-493.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Faisal Mumtaz & Kashif Imran & Abdullah Abusorrah & Syed Basit Ali Bukhari, 2023. "An Extensive Overview of Islanding Detection Strategies of Active Distributed Generations in Sustainable Microgrids," Sustainability, MDPI, vol. 15(5), pages 1-19, March.
    2. Ahmed Amirul Arefin & Md. Siddikur Rahman & Molla Shahadat Hossain Lipu & Mahidur R. Sarker & Narinderjit Singh Sawaran Singh & Sheikh Tanzim Meraj, 2023. "Determining Unintentional Island Threshold to Enhance the Reliability in an Electrical Distribution Grid," Mathematics, MDPI, vol. 11(4), pages 1-21, February.
    3. Juan Roberto Lopez & Luis Ibarra & Pedro Ponce & Arturo Molina, 2021. "A Decentralized Passive Islanding Detection Method Based on the Variations of Estimated Droop Characteristics," Energies, MDPI, vol. 14(22), pages 1-19, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ernest Igbineweka & Sunetra Chowdhury, 2024. "Application of Dual-Tree Complex Wavelet Transform in Islanding Detection for a Hybrid AC/DC Microgrid with Multiple Distributed Generators," Energies, MDPI, vol. 17(20), pages 1-33, October.
    2. Bayrak, Gökay & Kabalci, Ersan, 2016. "Implementation of a new remote islanding detection method for wind–solar hybrid power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1-15.
    3. Rezaee Jordehi, Ahmad, 2016. "Allocation of distributed generation units in electric power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 893-905.
    4. Gökay Bayrak & Davut Ertekin & Hassan Haes Alhelou & Pierluigi Siano, 2021. "A Real-Time Energy Management System Design for a Developed PV-Based Distributed Generator Considering the Grid Code Requirements in Turkey," Energies, MDPI, vol. 14(20), pages 1-21, October.
    5. Dhimish, Mahmoud & Holmes, Violeta & Dales, Mark, 2017. "Parallel fault detection algorithm for grid-connected photovoltaic plants," Renewable Energy, Elsevier, vol. 113(C), pages 94-111.
    6. SaberiKamarposhti, Morteza & Ghorbani, Amirabbas & Yadollahi, Mehdi, 2024. "A comprehensive survey on image encryption: Taxonomy, challenges, and future directions," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    7. Huda, A.S.N. & Živanović, R., 2017. "Large-scale integration of distributed generation into distribution networks: Study objectives, review of models and computational tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 974-988.
    8. Taiying Zheng & Huan Yang & Rongxiang Zhao & Yong Cheol Kang & Vladimir Terzija, 2018. "Design, Evaluation and Implementation of an Islanding Detection Method for a Micro-grid," Energies, MDPI, vol. 11(2), pages 1-24, February.
    9. Bhatti, Abdul Rauf & Salam, Zainal & Aziz, Mohd Junaidi Bin Abdul & Yee, Kong Pui & Ashique, Ratil H., 2016. "Electric vehicles charging using photovoltaic: Status and technological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 34-47.
    10. Dhimish, Mahmoud & Holmes, Violeta & Mehrdadi, Bruce & Dales, Mark & Mather, Peter, 2017. "Photovoltaic fault detection algorithm based on theoretical curves modelling and fuzzy classification system," Energy, Elsevier, vol. 140(P1), pages 276-290.
    11. Masoud Ahmadipour & Hashim Hizam & Mohammad Lutfi Othman & Mohd Amran Mohd Radzi, 2018. "An Anti-Islanding Protection Technique Using a Wavelet Packet Transform and a Probabilistic Neural Network," Energies, MDPI, vol. 11(10), pages 1-31, October.
    12. Li, Canbing & Cao, Chi & Cao, Yijia & Kuang, Yonghong & Zeng, Long & Fang, Baling, 2014. "A review of islanding detection methods for microgrid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 211-220.
    13. Rosa Anna Mastromauro, 2020. "Grid Synchronization and Islanding Detection Methods for Single-Stage Photovoltaic Systems," Energies, MDPI, vol. 13(13), pages 1-25, July.
    14. Rampinelli, Giuliano A. & Gasparin, Fabiano P. & Bühler, Alexandre J. & Krenzinger, Arno & Chenlo Romero, Faustino, 2015. "Assessment and mathematical modeling of energy quality parameters of grid connected photovoltaic inverters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 133-141.
    15. Laghari, J.A. & Mokhlis, H. & Karimi, M. & Bakar, A.H.A. & Mohamad, Hasmaini, 2015. "An islanding detection strategy for distribution network connected with hybrid DG resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 662-676.
    16. Md Mainul Islam & Mahmood Nagrial & Jamal Rizk & Ali Hellany, 2021. "General Aspects, Islanding Detection, and Energy Management in Microgrids: A Review," Sustainability, MDPI, vol. 13(16), pages 1-45, August.
    17. Sara Anttila & Jéssica S. Döhler & Janaína G. Oliveira & Cecilia Boström, 2022. "Grid Forming Inverters: A Review of the State of the Art of Key Elements for Microgrid Operation," Energies, MDPI, vol. 15(15), pages 1-30, July.
    18. Palizban, Omid & Kauhaniemi, Kimmo & Guerrero, Josep M., 2014. "Microgrids in active network management – part II: System operation, power quality and protection," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 440-451.
    19. Rampinelli, G.A. & Krenzinger, A. & Chenlo Romero, F., 2014. "Mathematical models for efficiency of inverters used in grid connected photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 578-587.
    20. Muttaqi, Kashem M. & Aghaei, Jamshid & Ganapathy, Velappa & Nezhad, Ali Esmaeel, 2015. "Technical challenges for electric power industries with implementation of distribution system automation in smart grids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 129-142.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:4877-:d:611524. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.