IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v188y2024ics0960077924010695.html
   My bibliography  Save this article

Design and dynamics of discrete dual-memristor chaotic maps and its application in speech encryption

Author

Listed:
  • He, Shaobo
  • Hu, Kai
  • Wang, Mengjiao
  • Wang, Huihai
  • Wu, Xianming

Abstract

Recently, the design and application of discrete memristors (DMs) have become one of the most innovative research hotspots. Compared with single-memristor chaotic maps, dual-memristor chaotic maps can exhibit more complex dynamical behaviors, stronger memory characteristics, and a more flexible structure. In this paper, we design two types of dual-memristor chaotic maps based on the modulation and switching. Each map is further categorized into two types according to the DM, and the corresponding Simulink models are built. Dynamical behaviors of these systems are analyzed using bifurcation diagrams, Lyapunov exponent spectra (LEs), 2-D bifurcation diagrams, attractor phase diagrams, and SE complexity measuring. Numerical results show that the proposed chaotic maps have rich dynamics. And when different DMs are introduced, dynamics of the modulation maps are different, but for the switching maps, dynamical behaviors are similar. Meanwhile, the PSIM analogue circuit is used to verify the physical realizability of the proposed model and circuits one of the proposed modulation mapping systems is designed. The simulation results are consistent with the numerical simulation results. Finally, an application of voice encryption is carried out, and its security and performance are analyzed. It shows that the designed chaotic maps have potential engineering application value.

Suggested Citation

  • He, Shaobo & Hu, Kai & Wang, Mengjiao & Wang, Huihai & Wu, Xianming, 2024. "Design and dynamics of discrete dual-memristor chaotic maps and its application in speech encryption," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
  • Handle: RePEc:eee:chsofr:v:188:y:2024:i:c:s0960077924010695
    DOI: 10.1016/j.chaos.2024.115517
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924010695
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115517?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Shaohua & Zhang, Hongli & Wang, Cong, 2023. "Memristor initial-boosted extreme multistability in the novel dual-memristor hyperchaotic maps," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    2. Zhang, Lingshuang & Li, Zhijun & Peng, Yuexi, 2024. "A hidden grid multi-scroll chaotic system coined with two multi-stable memristors," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    3. Yuan, Fang & Xing, Guibin & Deng, Yue, 2023. "Flexible cascade and parallel operations of discrete memristor," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    4. Ren, Lujie & Mou, Jun & Banerjee, Santo & Zhang, Yushu, 2023. "A hyperchaotic map with a new discrete memristor model: Design, dynamical analysis, implementation and application," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    5. Dmitri B. Strukov & Gregory S. Snider & Duncan R. Stewart & R. Stanley Williams, 2008. "The missing memristor found," Nature, Nature, vol. 453(7191), pages 80-83, May.
    6. Toktas, Abdurrahim & Erkan, Uğur & Gao, Suo & Pak, Chanil, 2024. "A robust bit-level image encryption based on Bessel map," Applied Mathematics and Computation, Elsevier, vol. 462(C).
    7. Zhu, Wanting & Sun, Kehui & Wang, Huihai & Fu, Longxiang & Minati, Ludovico, 2024. "Dynamics, synchronization and analog circuit implementation of a discrete neuron-like map with pulsating spiral dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    8. Lai, Qiang & Yang, Liang & Liu, Yuan, 2022. "Design and realization of discrete memristive hyperchaotic map with application in image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    9. Bo Yan & Shaobo He & Shaojie Wang, 2020. "Multistability and Formation of Spiral Waves in a Fractional-Order Memristor-Based Hyperchaotic Lü System with No Equilibrium Points," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-12, June.
    10. Hao Jiang & Daniel Belkin & Sergey E. Savel’ev & Siyan Lin & Zhongrui Wang & Yunning Li & Saumil Joshi & Rivu Midya & Can Li & Mingyi Rao & Mark Barnell & Qing Wu & J. Joshua Yang & Qiangfei Xia, 2017. "A novel true random number generator based on a stochastic diffusive memristor," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan, Zhenyi & Zhang, Chenkai & Wang, Yiming & Du, Baoxiang, 2023. "Construction, dynamic analysis and DSP implementation of a novel 3D discrete memristive hyperchaotic map," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    2. Chai, Xiuli & Shang, Guangyu & Wang, Binjie & Gan, Zhihua & Zhang, Wenkai, 2024. "Exploiting 2D-SDMCHM and matching embedding driven by flag-shaped hexagon prediction for visually meaningful medical image cryptosystem," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    3. Yang, Feifei & Ma, Jun & Wu, Fuqiang, 2024. "Review on memristor application in neural circuit and network," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
    4. Cao, Hongli & Wang, Yu & Banerjee, Santo & Cao, Yinghong & Mou, Jun, 2024. "A discrete Chialvo–Rulkov neuron network coupled with a novel memristor model: Design, Dynamical analysis, DSP implementation and its application," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    5. Wang, Qiao & Tian, Zean & Wu, Xianming & Li, Kunshuai & Sang, Haiwei & Yu, Xiong, 2024. "A 5D super-extreme-multistability hyperchaotic map based on parallel-cascaded memristors," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
    6. SaberiKamarposhti, Morteza & Ghorbani, Amirabbas & Yadollahi, Mehdi, 2024. "A comprehensive survey on image encryption: Taxonomy, challenges, and future directions," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    7. Bashkirtseva, I. & Ryashko, L., 2024. "Dynamical variability, order-chaos transitions, and bursting Canards in the memristive Rulkov neuron model," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    8. Lai, Qiang & Chen, Zhijie, 2023. "Grid-scroll memristive chaotic system with application to image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    9. Kyung Seok Woo & Jaehyun Kim & Janguk Han & Woohyun Kim & Yoon Ho Jang & Cheol Seong Hwang, 2022. "Probabilistic computing using Cu0.1Te0.9/HfO2/Pt diffusive memristors," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    10. Jinshi Li & Pingchuan Shen & Zeyan Zhuang & Junqi Wu & Ben Zhong Tang & Zujin Zhao, 2023. "In-situ electro-responsive through-space coupling enabling foldamers as volatile memory elements," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    11. Zhang, Shaohua & Zhang, Hongli & Wang, Cong, 2023. "Memristor initial-boosted extreme multistability in the novel dual-memristor hyperchaotic maps," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    12. Wang, Shaofu, 2023. "A novel memristive chaotic system and its adaptive sliding mode synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    13. Lai, Qiang & Chen, Zhijie, 2023. "Dynamical analysis and finite-time synchronization of grid-scroll memristive chaotic system without equilibrium," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    14. Fan, Zhenyi & Sun, Xu & Zhao, Jingjing & Zhang, Chenkai & Du, Baoxiang, 2024. "Dynamics analysis and feasibility verification of a 3D discrete memristive chaotic map with multi-vortex-like volume behavior," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    15. Feng, Liang & Hu, Cheng & Yu, Juan & Jiang, Haijun & Wen, Shiping, 2021. "Fixed-time Synchronization of Coupled Memristive Complex-valued Neural Networks," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    16. Hu, Yongbing & Li, Qian & Ding, Dawei & Jiang, Li & Yang, Zongli & Zhang, Hongwei & Zhang, Zhixin, 2021. "Multiple coexisting analysis of a fractional-order coupled memristive system and its application in image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    17. Zhang, Ge & Ma, Jun & Alsaedi, Ahmed & Ahmad, Bashir & Alzahrani, Faris, 2018. "Dynamical behavior and application in Josephson Junction coupled by memristor," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 290-299.
    18. Seou Choi & Yannick Salamin & Charles Roques-Carmes & Rumen Dangovski & Di Luo & Zhuo Chen & Michael Horodynski & Jamison Sloan & Shiekh Zia Uddin & Marin Soljačić, 2024. "Photonic probabilistic machine learning using quantum vacuum noise," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    19. Qin, Xiaoli & Wang, Cong & Li, Lixiang & Peng, Haipeng & Yang, Yixian & Ye, Lu, 2018. "Finite-time modified projective synchronization of memristor-based neural network with multi-links and leakage delay," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 302-315.
    20. Ui Yeon Won & Quoc An Vu & Sung Bum Park & Mi Hyang Park & Van Dam Do & Hyun Jun Park & Heejun Yang & Young Hee Lee & Woo Jong Yu, 2023. "Multi-neuron connection using multi-terminal floating–gate memristor for unsupervised learning," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:188:y:2024:i:c:s0960077924010695. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.