IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v162y2022ics096007792200666x.html
   My bibliography  Save this article

Image encryption algorithm based on hyperchaotic system and a new DNA sequence operation

Author

Listed:
  • Yu, Jinwei
  • Xie, Wei
  • Zhong, Zhenyu
  • Wang, Huan

Abstract

As the application of multimedia technology intensifies recently, more and more attention has been paid to privacy protection in image data. The interest in DNA-based image encryption techniques is increasing due to their high parallelism and large storage capacity. However, there are only few types of operations in existing DNA encryption methods and many of them are susceptible to chosen-plaintext attacks. To solve these problems, this paper proposes a novel image encryption algorithm based on a new DNA sequence operation and hyperchaotic system. Firstly, SHA-256 algorithm is used in conjunction with chaotic systems to generate plaintext-related random sequences. Secondly, the plain image is decomposed into RGB channels and encoded into DNA matrices. Thirdly, a new DNA operation called DNA triploid mutation (DNA-TM) is introduced to achieve cryptographic conversion of DNA bases. Furthermore, after decoding three DNA matrices, row-column permutation and pixel diffusion are employed to fuse the image. The experimental results demonstrate that our encryption approach is secure, with an average information entropy of 7.9972. In addition, the security analysis reveals that our scheme can resist differential attacks, plaintext attacks, noise attacks and occlusion attacks.

Suggested Citation

  • Yu, Jinwei & Xie, Wei & Zhong, Zhenyu & Wang, Huan, 2022. "Image encryption algorithm based on hyperchaotic system and a new DNA sequence operation," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
  • Handle: RePEc:eee:chsofr:v:162:y:2022:i:c:s096007792200666x
    DOI: 10.1016/j.chaos.2022.112456
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007792200666X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112456?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Çavuşoğlu, Ünal & Kaçar, Sezgin & Pehlivan, Ihsan & Zengin, Ahmet, 2017. "Secure image encryption algorithm design using a novel chaos based S-Box," Chaos, Solitons & Fractals, Elsevier, vol. 95(C), pages 92-101.
    2. Dong, Wenlong & Li, Qiliang & Tang, Yiwen, 2021. "Image encryption-then-transmission combining random sub-block scrambling and loop DNA algorithm in an optical chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    3. Zarei, Amin & Tavakoli, Saeed, 2016. "Hopf bifurcation analysis and ultimate bound estimation of a new 4-D quadratic autonomous hyper-chaotic system," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 323-339.
    4. Trujillo-Toledo, D.A. & López-Bonilla, O.R. & García-Guerrero, E.E. & Tlelo-Cuautle, E. & López-Mancilla, D. & Guillén-Fernández, O. & Inzunza-González, E., 2021. "Real-time RGB image encryption for IoT applications using enhanced sequences from chaotic maps," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    5. Yildirim, Melih, 2022. "Optical color image encryption scheme with a novel DNA encoding algorithm based on a chaotic circuit," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    6. Wang, Xingyuan & Yang, Jingjing, 2021. "Spatiotemporal chaos in multiple coupled mapping lattices with multi-dynamic coupling coefficient and its application in color image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Ping & Gu, Changgui & Yang, Huijie & Wang, Haiying & Moore, Jack Murdoch, 2023. "Characterizing systems by multi-scale structural complexity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    2. Xiaoqiang Zhang & Mi Liu & Xiaochang Yang, 2023. "Color Image Encryption Algorithm Based on Cross-Spiral Transformation and Zone Diffusion," Mathematics, MDPI, vol. 11(14), pages 1-28, July.
    3. Pai Liu & Shihua Zhou & Wei Qi Yan, 2022. "A 3D Cuboid Image Encryption Algorithm Based on Controlled Alternate Quantum Walk of Message Coding," Mathematics, MDPI, vol. 10(23), pages 1-26, November.
    4. SaberiKamarposhti, Morteza & Ghorbani, Amirabbas & Yadollahi, Mehdi, 2024. "A comprehensive survey on image encryption: Taxonomy, challenges, and future directions," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    5. Yan, Shaohui & Jiang, Defeng & Cui, Yu & Zhang, Hanbing & Li, Lin & Jiang, Jiawei, 2024. "A fractional-order hyperchaotic system that is period in integer-order case and its application in a novel high-quality color image encryption algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Ge & Ma, Jun & Alsaedi, Ahmed & Ahmad, Bashir & Alzahrani, Faris, 2018. "Dynamical behavior and application in Josephson Junction coupled by memristor," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 290-299.
    2. SaberiKamarposhti, Morteza & Ghorbani, Amirabbas & Yadollahi, Mehdi, 2024. "A comprehensive survey on image encryption: Taxonomy, challenges, and future directions," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    3. Qingye Huang & Linqing Huang & Shuting Cai & Xiaoming Xiong & Hui Zhang, 2023. "On a Symmetric Image Cryptosystem Based on a Novel One-Dimensional Chaotic System and Banyan Network," Mathematics, MDPI, vol. 11(21), pages 1-21, October.
    4. Ding, Dawei & Wang, Wei & Yang, Zongli & Hu, Yongbing & Wang, Jin & Wang, Mouyuan & Niu, Yan & Zhu, Haifei, 2023. "An n-dimensional modulo chaotic system with expected Lyapunov exponents and its application in image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    5. Sahoo, Shilalipi & Roy, Binoy Krishna, 2022. "Design of multi-wing chaotic systems with higher largest Lyapunov exponent," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    6. García-Guerrero, E.E. & Inzunza-González, E. & López-Bonilla, O.R. & Cárdenas-Valdez, J.R. & Tlelo-Cuautle, E., 2020. "Randomness improvement of chaotic maps for image encryption in a wireless communication scheme using PIC-microcontroller via Zigbee channels," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    7. Hongyan Zang & Mengdan Tai & Xinyuan Wei, 2022. "Image Encryption Schemes Based on a Class of Uniformly Distributed Chaotic Systems," Mathematics, MDPI, vol. 10(7), pages 1-21, March.
    8. Tuli, Rohan & Soneji, Hitesh Narayan & Churi, Prathamesh, 2022. "PixAdapt: A novel approach to adaptive image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    9. Nardo, Lucas G. & Nepomuceno, Erivelton G. & Arias-Garcia, Janier & Butusov, Denis N., 2019. "Image encryption using finite-precision error," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 69-78.
    10. Shajan, Emilda & Shrimali, Manish Dev, 2022. "Controlling multistability with intermittent noise," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    11. Lai, Qiang & Hu, Genwen & Erkan, Uǧur & Toktas, Abdurrahim, 2023. "High-efficiency medical image encryption method based on 2D Logistic-Gaussian hyperchaotic map," Applied Mathematics and Computation, Elsevier, vol. 442(C).
    12. Yildirim, Gokce & Tanyildizi, Erkan, 2023. "An innovative approach based on optimization for the determination of initial conditions of continuous-time chaotic system as a random number generator," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    13. Çavuşoğlu, Ünal & Akgül, Akif & Zengin, Ahmet & Pehlivan, Ihsan, 2017. "The design and implementation of hybrid RSA algorithm using a novel chaos based RNG," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 655-667.
    14. Sahoo, Shilalipi & Roy, Binoy Krishna, 2022. "A new multi-wing chaotic attractor with unusual variation in the number of wings," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    15. Liu, Hongjun & Kadir, Abdurahman & Xu, Chengbo, 2020. "Cryptanalysis and constructing S-Box based on chaotic map and backtracking," Applied Mathematics and Computation, Elsevier, vol. 376(C).
    16. Bowen Zhang & Lingfeng Liu, 2023. "Chaos-Based Image Encryption: Review, Application, and Challenges," Mathematics, MDPI, vol. 11(11), pages 1-39, June.
    17. Wang, Haijun & Dong, Guili, 2019. "New dynamics coined in a 4-D quadratic autonomous hyper-chaotic system," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 272-286.
    18. Trujillo-Toledo, D.A. & López-Bonilla, O.R. & García-Guerrero, E.E. & Tlelo-Cuautle, E. & López-Mancilla, D. & Guillén-Fernández, O. & Inzunza-González, E., 2021. "Real-time RGB image encryption for IoT applications using enhanced sequences from chaotic maps," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    19. Bezerra, João Inácio Moreira & Machado, Gustavo & Molter, Alexandre & Soares, Rafael Iankowski & Camargo, Vinícius, 2023. "A novel simultaneous permutation–diffusion image encryption scheme based on a discrete space map," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    20. Moreira Bezerra, João Inácio & Valduga de Almeida Camargo, Vinícius & Molter, Alexandre, 2021. "A new efficient permutation-diffusion encryption algorithm based on a chaotic map," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:162:y:2022:i:c:s096007792200666x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.