IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v185y2024ics0960077924006192.html
   My bibliography  Save this article

Dynamic vaccination strategies in dual-strain epidemics: A multi-agent-based game-theoretic approach on scale-free hybrid networks

Author

Listed:
  • Sushmit, Mushrafi Munim
  • Leon, Reyajul Hasan
  • Alam, Muntasir

Abstract

This paper proposes a multi-agent-based game-theoretic framework to explore the dynamics of decision-making among agents in a situation involving a dual-strain epidemic, where the emergence of the second strain is directly related to the first strain. It considers the impact of imperfect vaccination on dual strains within the SIRV framework, in a hybrid network that combines scale-free and grid-based structures. This research presents three models based on the level of decision-making of agents: Individual Decision Making (IDM), Collective Decision Making (CDM), and Stochastic Decision Making (SDM) model. In the IDM model, agents can continuously update their strategies based on the infection and vaccination statuses of their immediate neighbors. The CDM model offers a macro-level approach where agents’ willingness to vaccinate varies uniformly, while the SDM model maintains a constant level of willingness for vaccination across agents. This study demonstrates that agents using the IDM model tend to initiate vaccination earlier in scenarios of high infection rates, effectively mitigating the spread of the disease in subsequent epidemic seasons. However, when both infection and vaccination rates heavily influence decision-making, there is a noticeable decrease in vaccination uptake, thereby aggravating the spread of infection. Additionally, the authors found that in scenarios of high infection, an over reliance on vaccination without adequate initial uptake can jeopardize disease control efforts. Another important finding of this study is that despite the CDM and SDM models showing a quicker emergence of the second strain and reaching equilibrium points faster than the IDM model, the overall infection rate remains lower in the IDM model. This research underscores the complexity of managing dual-strain epidemics through vaccination strategies and highlights the significance of micro-level decision-making in epidemic control.

Suggested Citation

  • Sushmit, Mushrafi Munim & Leon, Reyajul Hasan & Alam, Muntasir, 2024. "Dynamic vaccination strategies in dual-strain epidemics: A multi-agent-based game-theoretic approach on scale-free hybrid networks," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
  • Handle: RePEc:eee:chsofr:v:185:y:2024:i:c:s0960077924006192
    DOI: 10.1016/j.chaos.2024.115067
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924006192
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115067?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ameen, I. & Baleanu, Dumitru & Ali, Hegagi Mohamed, 2020. "An efficient algorithm for solving the fractional optimal control of SIRV epidemic model with a combination of vaccination and treatment," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    2. Yin, Lu & Lu, YiKang & Du, ChunPeng & Shi, Lei, 2022. "Effect of vaccine efficacy on disease transmission with age-structured," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    3. Lu, Yikang & Geng, Yini & Gan, Wen & Shi, Lei, 2019. "Impacts of conformist on vaccination campaign in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
    4. Zou, Rongcheng & Duan, Xiaofang & Han, Zhen & Lu, Yikang & Ma, Kewei, 2023. "What information sources can prevent the epidemic: Local information or kin information?," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    5. Hou, Yunxiang & Lu, Yikang & Dong, Yuting & Jin, Libin & Shi, Lei, 2023. "Impact of different social attitudes on epidemic spreading in activity-driven networks," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    6. Fukuda, Eriko & Kokubo, Satoshi & Tanimoto, Jun & Wang, Zhen & Hagishima, Aya & Ikegaya, Naoki, 2014. "Risk assessment for infectious disease and its impact on voluntary vaccination behavior in social networks," Chaos, Solitons & Fractals, Elsevier, vol. 68(C), pages 1-9.
    7. Wu, Yucui & Zhang, Zhipeng & Song, Limei & Xia, Chengyi, 2024. "Global stability analysis of two strains epidemic model with imperfect vaccination and immunity waning in a complex network," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    8. Ichinose, Genki & Kurisaku, Takehiro, 2017. "Positive and negative effects of social impact on evolutionary vaccination game in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 84-90.
    9. Deka, Aniruddha & Bhattacharyya, Samit, 2022. "The effect of human vaccination behaviour on strain competition in an infectious disease: An imitation dynamic approach," Theoretical Population Biology, Elsevier, vol. 143(C), pages 62-76.
    10. Huang, Jiechen & Wang, Juan & Xia, Chengyi, 2020. "Role of vaccine efficacy in the vaccination behavior under myopic update rule on complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    11. Alam, Muntasir & Tanaka, Masaki & Tanimoto, Jun, 2019. "A game theoretic approach to discuss the positive secondary effect of vaccination scheme in an infinite and well-mixed population," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 201-213.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Bei & Yuan, Lin & Zou, Rongcheng & Su, Rui & Mi, Yuqiang, 2023. "The effect of migration on vaccination dilemma in networked populations," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    2. Kulsum, Umma & Alam, Muntasir & Kamrujjaman, Md., 2024. "Modeling and investigating the dilemma of early and delayed vaccination driven by the dynamics of imitation and aspiration," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    3. Alam, Muntasir & Ida, Yuki & Tanimoto, Jun, 2021. "Abrupt epidemic outbreak could be well tackled by multiple pre-emptive provisions-A game approach considering structured and unstructured populations," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    4. Cui, Guang-Hai & Wang, Zhen & Li, Jun-Li & Jin, Xing & Zhang, Zhi-Wang, 2021. "Influence of precaution and dynamic post-indemnity based insurance policy on controlling the propagation of epidemic security risks in networks," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    5. Wu, Bingjie & Huo, Liang'an, 2024. "The influence of different government policies on the co-evolution of information dissemination, vaccination behavior and disease transmission in multilayer networks," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    6. Cui, Guang-Hai & Li, Jun-Li & Dong, Kun-Xiang & Jin, Xing & Yang, Hong-Yong & Wang, Zhen, 2024. "Influence of subsidy policies against insurances on controlling the propagation of epidemic security risks in networks," Applied Mathematics and Computation, Elsevier, vol. 476(C).
    7. Lecorvaisier, Florian & Pontier, Dominique & Soubeyrand, Benoît & Fouchet, David, 2024. "Using a dynamical model to study the impact of a toxoid vaccine on the evolution of a bacterium: The example of diphtheria," Ecological Modelling, Elsevier, vol. 487(C).
    8. Oestereich, André L. & Pires, Marcelo A. & Crokidakis, Nuno & Cajueiro, Daniel O., 2023. "Optimal rewiring in adaptive networks in multi-coupled vaccination, epidemic and opinion dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    9. Meng, Xueyu & Lin, Jianhong & Fan, Yufei & Gao, Fujuan & Fenoaltea, Enrico Maria & Cai, Zhiqiang & Si, Shubin, 2023. "Coupled disease-vaccination behavior dynamic analysis and its application in COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    10. Wang, Jingrui & Zhang, Huizhen & Jin, Xing & Ma, Leyu & Chen, Yueren & Wang, Chao & Zhao, Jian & An, Tianbo, 2023. "Subsidy policy with punishment mechanism can promote voluntary vaccination behaviors in structured populations," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    11. Han, Dun & Wang, Xiao, 2023. "Vaccination strategies and virulent mutation spread: A game theory study," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    12. Benyun Shi & Guangliang Liu & Hongjun Qiu & Yu-Wang Chen & Shaoliang Peng, 2019. "Voluntary Vaccination through Perceiving Epidemic Severity in Social Networks," Complexity, Hindawi, vol. 2019, pages 1-13, February.
    13. Vivekanandhan, Gayathri & Nourian Zavareh, Mahdi & Natiq, Hayder & Nazarimehr, Fahimeh & Rajagopal, Karthikeyan & Svetec, Milan, 2022. "Investigation of vaccination game approach in spreading covid-19 epidemic model with considering the birth and death rates," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    14. Alam, Muntasir & Tanaka, Masaki & Tanimoto, Jun, 2019. "A game theoretic approach to discuss the positive secondary effect of vaccination scheme in an infinite and well-mixed population," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 201-213.
    15. Nishimura, Itsuki & Arefin, Md. Rajib & Tatsukawa, Yuichi & Utsumi, Shinobu & Hossain, Md. Anowar & Tanimoto, Jun, 2023. "Social dilemma analysis on vaccination game accounting for the effect of immunity waning," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    16. Kabir, K.M. Ariful, 2021. "How evolutionary game could solve the human vaccine dilemma," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    17. Kabir, K.M. Ariful & Tanimoto, Jun, 2019. "Dynamical behaviors for vaccination can suppress infectious disease – A game theoretical approach," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 229-239.
    18. Sakthivel, Rathinasamy & Suveetha, V.T. & Nithya, Venkatesh & Sakthivel, Ramalingam, 2020. "Finite-time fault detection filter design for complex systems with multiple stochastic communication and distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    19. Wang, Jianwei & Xu, Wenshu & Chen, Wei & Yu, Fengyuan & He, Jialu, 2021. "Information sharing can suppress the spread of epidemics: Voluntary vaccination game on two-layer networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    20. Keshri, Ajit Kumar & Mishra, Bimal Kumar & Rukhaiyar, Bansidhar Prasad, 2020. "When rumors create chaos in e-commerce," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:185:y:2024:i:c:s0960077924006192. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.