IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v503y2018icp390-399.html
   My bibliography  Save this article

Subsidy strategy based on history information can stimulate voluntary vaccination behaviors on seasonal diseases

Author

Listed:
  • Ding, Hong
  • Xu, Jia-Hao
  • Wang, Zhen
  • Ren, Yi-Zhi
  • Cui, Guang-Hai

Abstract

Subsidy policies are always used to offer some incentive for individual voluntary vaccination behaviors. The selection of subsidized individuals in proposed policies, such as random subsidy (RAN) and target subsidy (TAR), do not always consider an individual’s history of vaccination behaviors. In this paper, we studied a seasonal influenza-like disease model and proposed two history information-based subsidy policies in which individuals are selected as donees based on vaccination information in the previous seasons: HI-RAN randomly selects individuals who did not voluntarily vaccinate in the previous season, and HI-TAR combines the degree centrality on this basis. Simulations in different networks show that the two proposed subsidy policies both limit the extent of an epidemic outbreak, and the HI-TAR policy is more effective. Moreover, both of our proposed policies are most effective when only one step history information is considered. Through microscopic analysis of the evolution of vaccination behaviors, we found history information-based subsidy policies can enhance the vaccination probability of non-hub nodes. Our work is expected to provide valuable information for vaccination policymaking by considering vaccination history behaviors.

Suggested Citation

  • Ding, Hong & Xu, Jia-Hao & Wang, Zhen & Ren, Yi-Zhi & Cui, Guang-Hai, 2018. "Subsidy strategy based on history information can stimulate voluntary vaccination behaviors on seasonal diseases," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 390-399.
  • Handle: RePEc:eee:phsmap:v:503:y:2018:i:c:p:390-399
    DOI: 10.1016/j.physa.2018.03.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843711830311X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.03.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Haifeng & Fu, Feng & Zhang, Wenyao & Wang, Binghong, 2012. "Rational behavior is a ‘double-edged sword’ when considering voluntary vaccination," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(20), pages 4807-4815.
    2. Bin Wu & Feng Fu & Long Wang, 2011. "Imperfect Vaccine Aggravates the Long-Standing Dilemma of Voluntary Vaccination," PLOS ONE, Public Library of Science, vol. 6(6), pages 1-7, June.
    3. Chris T Bauch & Samit Bhattacharyya, 2012. "Evolutionary Game Theory and Social Learning Can Determine How Vaccine Scares Unfold," PLOS Computational Biology, Public Library of Science, vol. 8(4), pages 1-12, April.
    4. Du, Wen-Bo & Cao, Xian-Bin & Zhao, Lin & Hu, Mao-Bin, 2009. "Evolutionary games on scale-free networks with a preferential selection mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(20), pages 4509-4514.
    5. Tang, Guo-Mei & Cai, Chao-Ran & Wu, Zhi-Xi, 2017. "Evolutionary vaccination dynamics with internal support mechanisms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 135-143.
    6. Cui, Guang-Hai & Wang, Zhen & Yang, Yan-Cun & Tian, Sheng-Wen & Yue, Jun, 2018. "Heterogeneous game resource distributions promote cooperation in spatial prisoner’s dilemma game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1191-1200.
    7. Han, Dun & Sun, Mei, 2016. "An evolutionary vaccination game in the modified activity driven network by considering the closeness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 49-57.
    8. Wang, Zhigang & Zhang, Haifeng & Wang, Zhen, 2014. "Multiple effects of self-protection on the spreading of epidemics," Chaos, Solitons & Fractals, Elsevier, vol. 61(C), pages 1-7.
    9. Cai, Chao-Ran & Wu, Zhi-Xi & Guan, Jian-Yue, 2014. "Effect of vaccination strategies on the dynamic behavior of epidemic spreading and vaccine coverage," Chaos, Solitons & Fractals, Elsevier, vol. 62, pages 36-43.
    10. Eunha Shim & Gretchen B. Chapman & Alison P. Galvani, 2010. "Decision Making with Regard to Antiviral Intervention during an Influenza Pandemic," Medical Decision Making, , vol. 30(4), pages 64-81, July.
    11. Dun Han & Dandan Li & Chao Chen & Mei Sun, 2016. "How the heterogeneous infection rate effect on the epidemic spreading in activity-driven network," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 27(06), pages 1-12, June.
    12. Han, Dun & Sun, Mei, 2014. "Can memory and conformism resolve the vaccination dilemma?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 95-104.
    13. Ichinose, Genki & Kurisaku, Takehiro, 2017. "Positive and negative effects of social impact on evolutionary vaccination game in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 84-90.
    14. Zhang, Yan, 2013. "The impact of other-regarding tendencies on the spatial vaccination game," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 209-215.
    15. Zhang, Hai-Feng & Shu, Pan-Pan & Wang, Zhen & Tang, Ming & Small, Michael, 2017. "Preferential imitation can invalidate targeted subsidy policies on seasonal-influenza diseases," Applied Mathematics and Computation, Elsevier, vol. 294(C), pages 332-342.
    16. Zhi-Hai Rong & Qian Zhao & Zhi-Xi Wu & Tao Zhou & Chi Kong Tse, 2016. "Proper aspiration level promotes generous behavior in the spatial prisoner’s dilemma game," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 89(7), pages 1-7, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cui, Guang-Hai & Wang, Zhen & Li, Jun-Li & Jin, Xing & Zhang, Zhi-Wang, 2021. "Influence of precaution and dynamic post-indemnity based insurance policy on controlling the propagation of epidemic security risks in networks," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    2. Huang, Jiechen & Wang, Juan & Xia, Chengyi, 2020. "Role of vaccine efficacy in the vaccination behavior under myopic update rule on complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    3. Meng, Xueyu & Han, Sijie & Wu, Leilei & Si, Shubin & Cai, Zhiqiang, 2022. "Analysis of epidemic vaccination strategies by node importance and evolutionary game on complex networks," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    4. Ziyi Chen & Kaiyan Dai & Xing Jin & Liqin Hu & Yongheng Wang, 2023. "Aspiration-Based Learning in k -Hop Best-Shot Binary Networked Public Goods Games," Mathematics, MDPI, vol. 11(14), pages 1-19, July.
    5. Wang, Yichao & Tu, Lilan & Wang, Xianjia & Guo, Yifei, 2024. "Evolutionary vaccination game considering intra-seasonal strategy shifts regarding multi-seasonal epidemic spreading," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    6. Cui, Guang-Hai & Li, Jun-Li & Dong, Kun-Xiang & Jin, Xing & Yang, Hong-Yong & Wang, Zhen, 2024. "Influence of subsidy policies against insurances on controlling the propagation of epidemic security risks in networks," Applied Mathematics and Computation, Elsevier, vol. 476(C).
    7. Wang, Zhen & Li, Chaofan & Jin, Xing & Ding, Hong & Cui, Guanghai & Yu, Lanping, 2021. "Evolutionary dynamics of the interdependent security games on complex network," Applied Mathematics and Computation, Elsevier, vol. 399(C).
    8. Wang, Jingrui & Zhang, Huizhen & Jin, Xing & Ma, Leyu & Chen, Yueren & Wang, Chao & Zhao, Jian & An, Tianbo, 2023. "Subsidy policy with punishment mechanism can promote voluntary vaccination behaviors in structured populations," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cui, Guang-Hai & Wang, Zhen & Li, Jun-Li & Jin, Xing & Zhang, Zhi-Wang, 2021. "Influence of precaution and dynamic post-indemnity based insurance policy on controlling the propagation of epidemic security risks in networks," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    2. Ichinose, Genki & Kurisaku, Takehiro, 2017. "Positive and negative effects of social impact on evolutionary vaccination game in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 84-90.
    3. Li, Qiu & Li, MingChu & Lv, Lin & Guo, Cheng & Lu, Kun, 2017. "A new prediction model of infectious diseases with vaccination strategies based on evolutionary game theory," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 51-60.
    4. Cui, Guang-Hai & Li, Jun-Li & Dong, Kun-Xiang & Jin, Xing & Yang, Hong-Yong & Wang, Zhen, 2024. "Influence of subsidy policies against insurances on controlling the propagation of epidemic security risks in networks," Applied Mathematics and Computation, Elsevier, vol. 476(C).
    5. Wang, Jianwei & He, Jialu & Yu, Fengyuan & Guo, Yuxin & Li, Meiyu & Chen, Wei, 2020. "Realistic decision-making process with memory and adaptability in evolutionary vaccination game," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    6. Wang, Jingrui & Zhang, Huizhen & Jin, Xing & Ma, Leyu & Chen, Yueren & Wang, Chao & Zhao, Jian & An, Tianbo, 2023. "Subsidy policy with punishment mechanism can promote voluntary vaccination behaviors in structured populations," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    7. Wang, Qingqing & Du, Chunpeng & Geng, Yini & Shi, Lei, 2020. "Historical payoff can not overcome the vaccination dilemma on Barabási–Albert scale-free networks," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    8. Benyun Shi & Guangliang Liu & Hongjun Qiu & Yu-Wang Chen & Shaoliang Peng, 2019. "Voluntary Vaccination through Perceiving Epidemic Severity in Social Networks," Complexity, Hindawi, vol. 2019, pages 1-13, February.
    9. Li, Dandan & Ma, Jing, 2017. "How the government’s punishment and individual’s sensitivity affect the rumor spreading in online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 284-292.
    10. Soya Miyoshi & Marko Jusup & Petter Holme, 2021. "Flexible imitation suppresses epidemics through better vaccination," Journal of Computational Social Science, Springer, vol. 4(2), pages 709-720, November.
    11. Ariful Kabir, K.M. & Tanimoto, Jun, 2021. "A cyclic epidemic vaccination model: Embedding the attitude of individuals toward vaccination into SVIS dynamics through social interactions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    12. Sheryl Le Chang & Mahendra Piraveenan & Mikhail Prokopenko, 2019. "The Effects of Imitation Dynamics on Vaccination Behaviours in SIR-Network Model," IJERPH, MDPI, vol. 16(14), pages 1-31, July.
    13. Cai, Chao-Ran & Wu, Zhi-Xi & Guan, Jian-Yue, 2014. "Effect of vaccination strategies on the dynamic behavior of epidemic spreading and vaccine coverage," Chaos, Solitons & Fractals, Elsevier, vol. 62, pages 36-43.
    14. Li, Dandan & Ma, Jing & Tian, Zihao & Zhu, Hengmin, 2015. "An evolutionary game for the diffusion of rumor in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 433(C), pages 51-58.
    15. Alam, Muntasir & Tanaka, Masaki & Tanimoto, Jun, 2019. "A game theoretic approach to discuss the positive secondary effect of vaccination scheme in an infinite and well-mixed population," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 201-213.
    16. Iwamura, Yoshiro & Tanimoto, Jun, 2018. "Realistic decision-making processes in a vaccination game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 236-241.
    17. Shi, Benyun & Liu, Guangliang & Qiu, Hongjun & Wang, Zhen & Ren, Yizhi & Chen, Dan, 2019. "Exploring voluntary vaccination with bounded rationality through reinforcement learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 171-182.
    18. Kulsum, Umma & Alam, Muntasir & Kamrujjaman, Md., 2024. "Modeling and investigating the dilemma of early and delayed vaccination driven by the dynamics of imitation and aspiration," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    19. Han, Dun & Sun, Mei, 2014. "Can memory and conformism resolve the vaccination dilemma?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 95-104.
    20. Sun, Jiaqin & Fan, Ruguo & Luo, Ming & Zhang, Yingqing & Dong, Lili, 2018. "The evolution of cooperation in spatial prisoner’s dilemma game with dynamic relationship-based preferential learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 598-611.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:503:y:2018:i:c:p:390-399. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.