IDEAS home Printed from https://ideas.repec.org/a/hin/complx/3901218.html
   My bibliography  Save this article

Voluntary Vaccination through Perceiving Epidemic Severity in Social Networks

Author

Listed:
  • Benyun Shi
  • Guangliang Liu
  • Hongjun Qiu
  • Yu-Wang Chen
  • Shaoliang Peng

Abstract

The severity of an epidemic has a significant impact on individual vaccinating decisions under voluntary vaccination. During the epidemic of a vaccine-preventable disease, individuals in a social network can perceive the infection risks based on global information announced by public health authorities, or local information obtained from their social neighbors. After that, they can rationally decide whether or not to take the vaccine through weighing the relative cost of vaccination and infection (i.e., relative vaccine cost). In this case, both social network structure and individuals’ risk perception strategies will affect the final vaccine coverage. In this paper, we focus on the problem of how individuals’ perceptions on epidemic severity affect their vaccinating behaviors in the face of flu-like seasonal diseases in social networks, and vice versa. Specifically, we first present three types of static decision-making mechanisms, each of which simulates human vaccinating behaviors based on different local/global information. On this basis, we further present a reinforcement-learning-based mechanism, where individuals can use their historical vaccination experiences to determine what information is more suitable to estimate the severity of the epidemic. Finally, we carry out simulations on three types of social networks to investigate the effects of network structure, source of information, relative vaccine cost, and individual social connections on the final vaccine coverage and epidemic size. The results and findings can provide a new insight for designing incentive-based vaccination policies and intervention strategies for flu-like seasonal diseases.

Suggested Citation

  • Benyun Shi & Guangliang Liu & Hongjun Qiu & Yu-Wang Chen & Shaoliang Peng, 2019. "Voluntary Vaccination through Perceiving Epidemic Severity in Social Networks," Complexity, Hindawi, vol. 2019, pages 1-13, February.
  • Handle: RePEc:hin:complx:3901218
    DOI: 10.1155/2019/3901218
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2019/3901218.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2019/3901218.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/3901218?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bin Wu & Feng Fu & Long Wang, 2011. "Imperfect Vaccine Aggravates the Long-Standing Dilemma of Voluntary Vaccination," PLOS ONE, Public Library of Science, vol. 6(6), pages 1-7, June.
    2. Chris T Bauch & Samit Bhattacharyya, 2012. "Evolutionary Game Theory and Social Learning Can Determine How Vaccine Scares Unfold," PLOS Computational Biology, Public Library of Science, vol. 8(4), pages 1-12, April.
    3. Francisco C. Santos & Marta D. Santos & Jorge M. Pacheco, 2008. "Social diversity promotes the emergence of cooperation in public goods games," Nature, Nature, vol. 454(7201), pages 213-216, July.
    4. Streefland, Pieter H., 2001. "Public doubts about vaccination safety and resistance against vaccination," Health Policy, Elsevier, vol. 55(3), pages 159-172, March.
    5. Fukuda, Eriko & Kokubo, Satoshi & Tanimoto, Jun & Wang, Zhen & Hagishima, Aya & Ikegaya, Naoki, 2014. "Risk assessment for infectious disease and its impact on voluntary vaccination behavior in social networks," Chaos, Solitons & Fractals, Elsevier, vol. 68(C), pages 1-9.
    6. Dawei Zhao & Lianhai Wang & Shudong Li & Zhen Wang & Lin Wang & Bo Gao, 2014. "Immunization of Epidemics in Multiplex Networks," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-5, November.
    7. Ichinose, Genki & Kurisaku, Takehiro, 2017. "Positive and negative effects of social impact on evolutionary vaccination game in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 84-90.
    8. Marcel Salathé & James H Jones, 2010. "Dynamics and Control of Diseases in Networks with Community Structure," PLOS Computational Biology, Public Library of Science, vol. 6(4), pages 1-11, April.
    9. Shi, Benyun & Liu, Guangliang & Qiu, Hongjun & Wang, Zhen & Ren, Yizhi & Chen, Dan, 2019. "Exploring voluntary vaccination with bounded rationality through reinforcement learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 171-182.
    10. Zhang, Hai-Feng & Shu, Pan-Pan & Wang, Zhen & Tang, Ming & Small, Michael, 2017. "Preferential imitation can invalidate targeted subsidy policies on seasonal-influenza diseases," Applied Mathematics and Computation, Elsevier, vol. 294(C), pages 332-342.
    11. M. Brisson & W. J. Edmunds, 2003. "Economic Evaluation of Vaccination Programs: The Impact of Herd-Immunity," Medical Decision Making, , vol. 23(1), pages 76-82, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Yichao & Tu, Lilan & Wang, Xianjia & Guo, Yifei, 2024. "Evolutionary vaccination game considering intra-seasonal strategy shifts regarding multi-seasonal epidemic spreading," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cui, Guang-Hai & Li, Jun-Li & Dong, Kun-Xiang & Jin, Xing & Yang, Hong-Yong & Wang, Zhen, 2024. "Influence of subsidy policies against insurances on controlling the propagation of epidemic security risks in networks," Applied Mathematics and Computation, Elsevier, vol. 476(C).
    2. Cui, Guang-Hai & Wang, Zhen & Li, Jun-Li & Jin, Xing & Zhang, Zhi-Wang, 2021. "Influence of precaution and dynamic post-indemnity based insurance policy on controlling the propagation of epidemic security risks in networks," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    3. Wang, Qingqing & Du, Chunpeng & Geng, Yini & Shi, Lei, 2020. "Historical payoff can not overcome the vaccination dilemma on Barabási–Albert scale-free networks," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    4. Ding, Hong & Xu, Jia-Hao & Wang, Zhen & Ren, Yi-Zhi & Cui, Guang-Hai, 2018. "Subsidy strategy based on history information can stimulate voluntary vaccination behaviors on seasonal diseases," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 390-399.
    5. Kulsum, Umma & Alam, Muntasir & Kamrujjaman, Md., 2024. "Modeling and investigating the dilemma of early and delayed vaccination driven by the dynamics of imitation and aspiration," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    6. Kabir, KM Ariful & Kuga, Kazuki & Tanimoto, Jun, 2020. "The impact of information spreading on epidemic vaccination game dynamics in a heterogeneous complex network- A theoretical approach," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    7. Zhang, Hai-Feng & Shu, Pan-Pan & Wang, Zhen & Tang, Ming & Small, Michael, 2017. "Preferential imitation can invalidate targeted subsidy policies on seasonal-influenza diseases," Applied Mathematics and Computation, Elsevier, vol. 294(C), pages 332-342.
    8. Meng, Xueyu & Lin, Jianhong & Fan, Yufei & Gao, Fujuan & Fenoaltea, Enrico Maria & Cai, Zhiqiang & Si, Shubin, 2023. "Coupled disease-vaccination behavior dynamic analysis and its application in COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    9. Wang, Jingrui & Zhang, Huizhen & Jin, Xing & Ma, Leyu & Chen, Yueren & Wang, Chao & Zhao, Jian & An, Tianbo, 2023. "Subsidy policy with punishment mechanism can promote voluntary vaccination behaviors in structured populations," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    10. Li, Qiu & Li, MingChu & Lv, Lin & Guo, Cheng & Lu, Kun, 2017. "A new prediction model of infectious diseases with vaccination strategies based on evolutionary game theory," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 51-60.
    11. Kabir, K.M. Ariful & Tanimoto, Jun, 2019. "Evolutionary vaccination game approach in metapopulation migration model with information spreading on different graphs," Chaos, Solitons & Fractals, Elsevier, vol. 120(C), pages 41-55.
    12. Ariful Kabir, K.M. & Tanimoto, Jun, 2021. "A cyclic epidemic vaccination model: Embedding the attitude of individuals toward vaccination into SVIS dynamics through social interactions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    13. Meng, Xueyu & Han, Sijie & Wu, Leilei & Si, Shubin & Cai, Zhiqiang, 2022. "Analysis of epidemic vaccination strategies by node importance and evolutionary game on complex networks," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    14. Kabir, K.M. Ariful, 2021. "How evolutionary game could solve the human vaccine dilemma," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    15. Kabir, K.M. Ariful & Tanimoto, Jun, 2019. "Dynamical behaviors for vaccination can suppress infectious disease – A game theoretical approach," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 229-239.
    16. Wang, Jianwei & Xu, Wenshu & Chen, Wei & Yu, Fengyuan & He, Jialu, 2021. "Information sharing can suppress the spread of epidemics: Voluntary vaccination game on two-layer networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    17. Ullah, Mohammad Sharif & Higazy, M. & Kabir, K.M. Ariful, 2022. "Dynamic analysis of mean-field and fractional-order epidemic vaccination strategies by evolutionary game approach," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    18. Kejriwal, Saransh & Sheth, Sarjan & Silpa, P.S. & Sarkar, Sumit & Guha, Apratim, 2022. "Attaining herd immunity to a new infectious disease through multi-stage policies incentivising voluntary vaccination," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    19. Ge, Jingwen & Wang, Wendi, 2022. "Vaccination games in prevention of infectious diseases with application to COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    20. Ichinose, Genki & Kurisaku, Takehiro, 2017. "Positive and negative effects of social impact on evolutionary vaccination game in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 84-90.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:3901218. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.