IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0040689.html
   My bibliography  Save this article

Complexity-Entropy Causality Plane as a Complexity Measure for Two-Dimensional Patterns

Author

Listed:
  • Haroldo V Ribeiro
  • Luciano Zunino
  • Ervin K Lenzi
  • Perseu A Santoro
  • Renio S Mendes

Abstract

Complexity measures are essential to understand complex systems and there are numerous definitions to analyze one-dimensional data. However, extensions of these approaches to two or higher-dimensional data, such as images, are much less common. Here, we reduce this gap by applying the ideas of the permutation entropy combined with a relative entropic index. We build up a numerical procedure that can be easily implemented to evaluate the complexity of two or higher-dimensional patterns. We work out this method in different scenarios where numerical experiments and empirical data were taken into account. Specifically, we have applied the method to fractal landscapes generated numerically where we compare our measures with the Hurst exponent; liquid crystal textures where nematic-isotropic-nematic phase transitions were properly identified; 12 characteristic textures of liquid crystals where the different values show that the method can distinguish different phases; and Ising surfaces where our method identified the critical temperature and also proved to be stable.

Suggested Citation

  • Haroldo V Ribeiro & Luciano Zunino & Ervin K Lenzi & Perseu A Santoro & Renio S Mendes, 2012. "Complexity-Entropy Causality Plane as a Complexity Measure for Two-Dimensional Patterns," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-9, August.
  • Handle: RePEc:plo:pone00:0040689
    DOI: 10.1371/journal.pone.0040689
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0040689
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0040689&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0040689?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zunino, Luciano & Ribeiro, Haroldo V., 2016. "Discriminating image textures with the multiscale two-dimensional complexity-entropy causality plane," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 679-688.
    2. Zhang, Boyi & Shang, Pengjian & Zhou, Qin, 2021. "The identification of fractional order systems by multiscale multivariate analysis," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    3. Carlos F Alvarez & Luis E Palafox & Leocundo Aguilar & Mauricio A Sanchez & Luis G Martinez, 2016. "Using Link Disconnection Entropy Disorder to Detect Fast Moving Nodes in MANETs," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-15, May.
    4. Boaretto, Bruno R.R. & Budzinski, Roberto C. & Rossi, Kalel L. & Masoller, Cristina & Macau, Elbert E.N., 2023. "Spatial permutation entropy distinguishes resting brain states," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    5. Jauregui, M. & Zunino, L. & Lenzi, E.K. & Mendes, R.S. & Ribeiro, H.V., 2018. "Characterization of time series via Rényi complexity–entropy curves," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 498(C), pages 74-85.
    6. Liu, Zhengli & Shang, Pengjian & Wang, Yuanyuan, 2020. "Characterization of time series through information quantifiers," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    7. Wang, Zhuo & Shang, Pengjian, 2021. "Generalized entropy plane based on multiscale weighted multivariate dispersion entropy for financial time series," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    8. Pessa, Arthur A.B. & Zola, Rafael S. & Perc, Matjaž & Ribeiro, Haroldo V., 2022. "Determining liquid crystal properties with ordinal networks and machine learning," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0040689. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.