IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v186y2021ics0047259x21000762.html
   My bibliography  Save this article

Ordinal pattern dependence as a multivariate dependence measure

Author

Listed:
  • Betken, Annika
  • Dehling, Herold
  • Nüßgen, Ines
  • Schnurr, Alexander

Abstract

In this article, we show that the recently introduced ordinal pattern dependence fits into the axiomatic framework of general multivariate dependence measures, i.e., measures of dependence between two multivariate random objects. Furthermore, we consider multivariate generalizations of established univariate dependence measures like Kendall’s τ, Spearman’s ρ and Pearson’s correlation coefficient. Among these, only multivariate Kendall’s τ proves to take the dynamical dependence of random vectors stemming from multidimensional time series into account. Consequently, the article focuses on a comparison of ordinal pattern dependence and multivariate Kendall’s τ in this context. To this end, limit theorems for multivariate Kendall’s τ are established under the assumption of near-epoch dependent data-generating time series. We analyze how ordinal pattern dependence compares to multivariate Kendall’s τ and Pearson’s correlation coefficient on theoretical grounds. Additionally, a simulation study illustrates differences in the kind of dependencies that are revealed by multivariate Kendall’s τ and ordinal pattern dependence.

Suggested Citation

  • Betken, Annika & Dehling, Herold & Nüßgen, Ines & Schnurr, Alexander, 2021. "Ordinal pattern dependence as a multivariate dependence measure," Journal of Multivariate Analysis, Elsevier, vol. 186(C).
  • Handle: RePEc:eee:jmvana:v:186:y:2021:i:c:s0047259x21000762
    DOI: 10.1016/j.jmva.2021.104798
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X21000762
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2021.104798?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chstoph Bandt & Faten Shiha, 2007. "Order Patterns in Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 28(5), pages 646-665, September.
    2. Echegoyen, I. & Vera-Ávila, V. & Sevilla-Escoboza, R. & Martínez, J.H. & Buldú, J.M., 2019. "Ordinal synchronization: Using ordinal patterns to capture interdependencies between time series," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 8-18.
    3. Joe, Harry, 1990. "Multivariate concordance," Journal of Multivariate Analysis, Elsevier, vol. 35(1), pages 12-30, October.
    4. Alexander Schnurr & Herold Dehling, 2017. "Testing for Structural Breaks via Ordinal Pattern Dependence," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 706-720, April.
    5. Sinn, Mathieu & Keller, Karsten, 2011. "Estimation of ordinal pattern probabilities in Gaussian processes with stationary increments," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1781-1790, April.
    6. Dehling, Herold & Vogel, Daniel & Wendler, Martin & Wied, Dominik, 2017. "Testing For Changes In Kendall’S Tau," Econometric Theory, Cambridge University Press, vol. 33(6), pages 1352-1386, December.
    7. Christoph Bandt, 2020. "Order patterns, their variation and change points in financial time series and Brownian motion," Statistical Papers, Springer, vol. 61(4), pages 1565-1588, August.
    8. Alexander Schnurr, 2014. "An ordinal pattern approach to detect and to model leverage effects and dependence structures between financial time series," Statistical Papers, Springer, vol. 55(4), pages 919-931, November.
    9. Wooldridge, Jeffrey M. & White, Halbert, 1988. "Some Invariance Principles and Central Limit Theorems for Dependent Heterogeneous Processes," Econometric Theory, Cambridge University Press, vol. 4(2), pages 210-230, August.
    10. Grothe, Oliver & Schnieders, Julius & Segers, Johan, 2014. "Measuring association and dependence between random vectors," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 96-110.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Schnurr, Alexander & Fischer, Svenja, 2022. "Generalized ordinal patterns allowing for ties and their applications in hydrology," Computational Statistics & Data Analysis, Elsevier, vol. 171(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schnurr, Alexander & Fischer, Svenja, 2022. "Generalized ordinal patterns allowing for ties and their applications in hydrology," Computational Statistics & Data Analysis, Elsevier, vol. 171(C).
    2. Christoph Bandt, 2019. "Order patterns, their variation and change points in financial time series and Brownian motion," Papers 1910.09978, arXiv.org.
    3. Christoph Bandt, 2020. "Order patterns, their variation and change points in financial time series and Brownian motion," Statistical Papers, Springer, vol. 61(4), pages 1565-1588, August.
    4. Annika Betken & Jannis Buchsteiner & Herold Dehling & Ines Münker & Alexander Schnurr & Jeannette H.C. Woerner, 2021. "Ordinal patterns in long‐range dependent time series," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(3), pages 969-1000, September.
    5. Fernando López & Mariano Matilla-García & Jesús Mur & Manuel Ruiz Marín, 2021. "Statistical Tests of Symbolic Dynamics," Mathematics, MDPI, vol. 9(8), pages 1-21, April.
    6. Alexander Schnurr, 2015. "An Ordinal Pattern Approach to Detect and to Model Leverage Effects and Dependence Structures Between Financial Time Series," Papers 1502.07321, arXiv.org.
    7. Weiß, Christian H. & Ruiz Marín, Manuel & Keller, Karsten & Matilla-García, Mariano, 2022. "Non-parametric analysis of serial dependence in time series using ordinal patterns," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    8. Liebscher, Eckhard, 2021. "Kendall regression coefficient," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    9. Yanqin Fan & Marc Henry, 2020. "Vector copulas," Papers 2009.06558, arXiv.org, revised Apr 2021.
    10. Fuchs, Sebastian & Di Lascio, F. Marta L. & Durante, Fabrizio, 2021. "Dissimilarity functions for rank-invariant hierarchical clustering of continuous variables," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
    11. Liebscher Eckhard, 2014. "Copula-based dependence measures," Dependence Modeling, De Gruyter, vol. 2(1), pages 1-16, October.
    12. Guili Liao & Qimeng Liu & Rongmao Zhang & Shifang Zhang, 2022. "Rank test of unit‐root hypothesis with AR‐GARCH errors," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(5), pages 695-719, September.
    13. Koen Decancq, 2020. "Measuring cumulative deprivation and affluence based on the diagonal dependence diagram," METRON, Springer;Sapienza Università di Roma, vol. 78(2), pages 103-117, August.
    14. Miguel Henry & George Judge, 2019. "Permutation Entropy and Information Recovery in Nonlinear Dynamic Economic Time Series," Econometrics, MDPI, vol. 7(1), pages 1-16, March.
    15. Ho-Yin Mak & Zuo-Jun Max Shen, 2014. "Pooling and Dependence of Demand and Yield in Multiple-Location Inventory Systems," Manufacturing & Service Operations Management, INFORMS, vol. 16(2), pages 263-269, May.
    16. Arai, Yoichi, 2016. "Testing For Linearity In Regressions With I(1) Processes," Hitotsubashi Journal of Economics, Hitotsubashi University, vol. 57(1), pages 111-138, June.
    17. Tan, Zhengxun & Liu, Juan & Chen, Juanjuan, 2021. "Detecting stock market turning points using wavelet leaders method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    18. Koo, Bonsoo & Seo, Myung Hwan, 2015. "Structural-break models under mis-specification: Implications for forecasting," Journal of Econometrics, Elsevier, vol. 188(1), pages 166-181.
    19. Mariusz Czekala & Zbigniew Kurylek, 2021. "Inversions Distribution and Testing Correlation Changes for Rates of Return," European Research Studies Journal, European Research Studies Journal, vol. 0(3B), pages 633-650.
    20. Di Bernardino Elena & Rullière Didier, 2016. "On an asymmetric extension of multivariate Archimedean copulas based on quadratic form," Dependence Modeling, De Gruyter, vol. 4(1), pages 1-20, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:186:y:2021:i:c:s0047259x21000762. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.