Effect of a novel generalized incidence rate function in SIR model: Stability switches and bifurcations
Author
Abstract
Suggested Citation
DOI: 10.1016/j.chaos.2022.112967
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Sharma, Natasha & Gupta, Arvind Kumar, 2017. "Impact of time delay on the dynamics of SEIR epidemic model using cellular automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 114-125.
- Zhou, Yugui & Xiao, Dongmei & Li, Yilong, 2007. "Bifurcations of an epidemic model with non-monotonic incidence rate of saturated mass action," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1903-1915.
- Avila-Vales, Eric & Pérez, Ángel G.C., 2019. "Dynamics of a time-delayed SIR epidemic model with logistic growth and saturated treatment," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 55-69.
- Parsamanesh, Mahmood & Erfanian, Majid, 2018. "Global dynamics of an epidemic model with standard incidence rate and vaccination strategy," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 192-199.
- Zhang, Zizhen & Rahman, Ghaus ur & Gómez-Aguilar, J.F. & Torres-Jiménez, J., 2022. "Dynamical aspects of a delayed epidemic model with subdivision of susceptible population and control strategies," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
- Bashier, Eihab B.M. & Patidar, Kailash C., 2017. "Optimal control of an epidemiological model with multiple time delays," Applied Mathematics and Computation, Elsevier, vol. 292(C), pages 47-56.
- Li, Jinhui & Teng, Zhidong & Wang, Guangqing & Zhang, Long & Hu, Cheng, 2017. "Stability and bifurcation analysis of an SIR epidemic model with logistic growth and saturated treatment," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 63-71.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- repec:hin:complx:9876013 is not listed on IDEAS
- Liu, Qun & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2020. "A stochastic SIRS epidemic model with logistic growth and general nonlinear incidence rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
- Gupta, R.P. & Kumar, Arun, 2022. "Endemic bubble and multiple cusps generated by saturated treatment of an SIR model through Hopf and Bogdanov–Takens bifurcations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 197(C), pages 1-21.
- Sharma, Natasha & Verma, Atul Kumar & Gupta, Arvind Kumar, 2021. "Spatial network based model forecasting transmission and control of COVID-19," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
- Roy, Souvik, 2019. "A study on delay-sensitive cellular automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 600-616.
- Rajasekar, S.P. & Pitchaimani, M. & Zhu, Quanxin, 2020. "Progressive dynamics of a stochastic epidemic model with logistic growth and saturated treatment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
- Liu, Qun & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2018. "Dynamics of a stochastic tuberculosis model with antibiotic resistance," Chaos, Solitons & Fractals, Elsevier, vol. 109(C), pages 223-230.
- Hossain, Mainul & Pal, Nikhil & Samanta, Sudip, 2020. "Impact of fear on an eco-epidemiological model," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
- Saha, Pritam & Mondal, Bapin & Ghosh, Uttam, 2023. "Dynamical behaviors of an epidemic model with partial immunity having nonlinear incidence and saturated treatment in deterministic and stochastic environments," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
- Jorge E. Macías-Díaz & Nauman Ahmed & Muhammad Rafiq, 2019. "Analysis and Nonstandard Numerical Design of a Discrete Three-Dimensional Hepatitis B Epidemic Model," Mathematics, MDPI, vol. 7(12), pages 1-16, December.
- Jiao, Xubin & Liu, Xiuxiang, 2024. "Rich dynamics of a delayed Filippov avian-only influenza model with two-thresholds policy," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
- Han, Bingtao & Jiang, Daqing & Zhou, Baoquan & Hayat, Tasawar & Alsaedi, Ahmed, 2021. "Stationary distribution and probability density function of a stochastic SIRSI epidemic model with saturation incidence rate and logistic growth," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
- Kumar, Anuj & Srivastava, Prashant K. & Gupta, R.P., 2019. "Nonlinear dynamics of infectious diseases via information-induced vaccination and saturated treatment," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 157(C), pages 77-99.
- Liu, Junli & Zhou, Yicang, 2009. "Global stability of an SIRS epidemic model with transport-related infection," Chaos, Solitons & Fractals, Elsevier, vol. 40(1), pages 145-158.
- Zhang, Zizhen & Rahman, Ghaus ur & Gómez-Aguilar, J.F. & Torres-Jiménez, J., 2022. "Dynamical aspects of a delayed epidemic model with subdivision of susceptible population and control strategies," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
- Hernández Guillén, J.D. & Martín del Rey, A. & Hernández Encinas, L., 2017. "Study of the stability of a SEIRS model for computer worm propagation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 411-421.
- Sabbar, Yassine & Din, Anwarud & Kiouach, Driss, 2023. "Influence of fractal–fractional differentiation and independent quadratic Lévy jumps on the dynamics of a general epidemic model with vaccination strategy," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
- Xinyu Liu & Yuting Ding, 2022. "Stability and Numerical Simulations of a New SVIR Model with Two Delays on COVID-19 Booster Vaccination," Mathematics, MDPI, vol. 10(10), pages 1-27, May.
- Zheng, Qianqian & Shen, Jianwei & Pandey, Vikas & Guan, Linan & Guo, Yantao, 2023. "Turing instability in a network-organized epidemic model with delay," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
- Sabbar, Yassine, 2024. "Exploring threshold dynamics of a behavioral epidemic model featuring two susceptible classes and second-order jump–diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
- Jia, Nan & Ding, Li & Liu, Yu-Jing & Hu, Ping, 2018. "Global stability and optimal control of epidemic spreading on multiplex networks with nonlinear mutual interaction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 93-105.
More about this item
Keywords
New incidence rate function; Incubation delay; Codimension 2 bifurcation; Stability switch; Double frequency oscillation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:166:y:2023:i:c:s0960077922011468. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.