IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v479y2017icp411-421.html
   My bibliography  Save this article

Study of the stability of a SEIRS model for computer worm propagation

Author

Listed:
  • Hernández Guillén, J.D.
  • Martín del Rey, A.
  • Hernández Encinas, L.

Abstract

Nowadays, malware is the most important threat to information security. In this sense, several mathematical models to simulate malware spreading have appeared. They are compartmental models where the population of devices is classified into different compartments: susceptible, exposed, infectious, recovered, etc. The main goal of this work is to propose an improved SEIRS (Susceptible–Exposed–Infectious–Recovered–Susceptible) mathematical model to simulate computer worm propagation. It is a continuous model whose dynamic is ruled by means of a system of ordinary differential equations. It considers more realistic parameters related to the propagation; in fact, a modified incidence rate has been used. Moreover, the equilibrium points are computed and their local and global stability analyses are studied. From the explicit expression of the basic reproductive number, efficient control measures are also obtained.

Suggested Citation

  • Hernández Guillén, J.D. & Martín del Rey, A. & Hernández Encinas, L., 2017. "Study of the stability of a SEIRS model for computer worm propagation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 411-421.
  • Handle: RePEc:eee:phsmap:v:479:y:2017:i:c:p:411-421
    DOI: 10.1016/j.physa.2017.03.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437117302753
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2017.03.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sharma, Natasha & Gupta, Arvind Kumar, 2017. "Impact of time delay on the dynamics of SEIR epidemic model using cellular automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 114-125.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Zhenhua & Gao, Hongxia & Wang, Dan & Alnuaim, Abeer Ali & Firdausi, Muhammad & Mostafa, Almetwally M., 2022. "SEI2RS malware propagation model considering two infection rates in cyber–physical systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    2. Jia, Pingqi & Wang, Chao & Zhang, Gaoyu & Ma, Jianfeng, 2019. "A rumor spreading model based on two propagation channels in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 342-353.
    3. Hosseini, Soodeh & Azgomi, Mohammad Abdollahi, 2018. "The dynamics of an SEIRS-QV malware propagation model in heterogeneous networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 803-817.
    4. Gao, Qingwu & Zhuang, Jun, 2020. "Stability analysis and control strategies for worm attack in mobile networks via a VEIQS propagation model," Applied Mathematics and Computation, Elsevier, vol. 368(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sharma, Natasha & Verma, Atul Kumar & Gupta, Arvind Kumar, 2021. "Spatial network based model forecasting transmission and control of COVID-19," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    2. Liu, Qun & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2018. "Dynamics of a stochastic tuberculosis model with antibiotic resistance," Chaos, Solitons & Fractals, Elsevier, vol. 109(C), pages 223-230.
    3. Alzahrani, Faris & Razzaq, Oyoon Abdul & Rehman, Daniyal Ur & Khan, Najeeb Alam & Alshomrani, Ali Saleh & Ullah, Malik Zaka, 2022. "Repercussions of unreported populace on disease dynamics and its optimal control through system of fractional order delay differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    4. Hong Zhang & Shigen Shen & Qiying Cao & Xiaojun Wu & Shaofeng Liu, 2020. "Modeling and analyzing malware diffusion in wireless sensor networks based on cellular automaton," International Journal of Distributed Sensor Networks, , vol. 16(11), pages 15501477209, November.
    5. Das, Tanuja & Srivastava, Prashant K., 2023. "Effect of a novel generalized incidence rate function in SIR model: Stability switches and bifurcations," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    6. Gabrick, Enrique C. & Protachevicz, Paulo R. & Batista, Antonio M. & Iarosz, Kelly C. & de Souza, Silvio L.T. & Almeida, Alexandre C.L. & Szezech, José D. & Mugnaine, Michele & Caldas, Iberê L., 2022. "Effect of two vaccine doses in the SEIR epidemic model using a stochastic cellular automaton," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    7. Roy, Souvik, 2019. "A study on delay-sensitive cellular automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 600-616.
    8. Zhang, Zizhen & Rahman, Ghaus ur & Gómez-Aguilar, J.F. & Torres-Jiménez, J., 2022. "Dynamical aspects of a delayed epidemic model with subdivision of susceptible population and control strategies," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:479:y:2017:i:c:p:411-421. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.