IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v7y2019i12p1157-d292842.html
   My bibliography  Save this article

Analysis and Nonstandard Numerical Design of a Discrete Three-Dimensional Hepatitis B Epidemic Model

Author

Listed:
  • Jorge E. Macías-Díaz

    (Departamento de Matemáticas y Física, Universidad Autónoma de Aguascalientes, Aguascalientes 20131, Mexico)

  • Nauman Ahmed

    (Department of Mathematics and Statistics, University of the Lahore, Lahore 54590, Pakistan)

  • Muhammad Rafiq

    (Faculty of Engineering, University of Central Punjab, Lahore 54590, Pakistan)

Abstract

In this work, we numerically investigate a three-dimensional nonlinear reaction-diffusion susceptible-infected-recovered hepatitis B epidemic model. To that end, the stability and bifurcation analyses of the mathematical model are rigorously discussed using the Routh–Hurwitz condition. Numerically, an efficient structure-preserving nonstandard finite-difference time-splitting method is proposed to approximate the solutions of the hepatitis B model. The dynamical consistency of the splitting method is verified mathematically and graphically. Moreover, we perform a mathematical study of the stability of the proposed scheme. The properties of consistency, stability and convergence of our technique are thoroughly analyzed in this work. Some comparisons are provided against existing standard techniques in order to validate the efficacy of our scheme. Our computational results show a superior performance of the present approach when compared against existing methods available in the literature.

Suggested Citation

  • Jorge E. Macías-Díaz & Nauman Ahmed & Muhammad Rafiq, 2019. "Analysis and Nonstandard Numerical Design of a Discrete Three-Dimensional Hepatitis B Epidemic Model," Mathematics, MDPI, vol. 7(12), pages 1-16, December.
  • Handle: RePEc:gam:jmathe:v:7:y:2019:i:12:p:1157-:d:292842
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/7/12/1157/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/7/12/1157/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xi-Lan Liu & Shuxia Pan, 2019. "Spreading Speed in A Nonmonotone Equation with Dispersal and Delay," Mathematics, MDPI, vol. 7(3), pages 1-9, March.
    2. Khan, Tahir & Ullah, Zakir & Ali, Nigar & Zaman, Gul, 2019. "Modeling and control of the hepatitis B virus spreading using an epidemic model," Chaos, Solitons & Fractals, Elsevier, vol. 124(C), pages 1-9.
    3. Parsamanesh, Mahmood & Erfanian, Majid, 2018. "Global dynamics of an epidemic model with standard incidence rate and vaccination strategy," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 192-199.
    4. Tilahun, Getachew Teshome & Makinde, Oluwole Daniel & Malonza, David, 2018. "Co-dynamics of Pneumonia and Typhoid fever diseases with cost effective optimal control analysis," Applied Mathematics and Computation, Elsevier, vol. 316(C), pages 438-459.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fatima, Bibi & Zaman, Gul, 2020. "Co-infection of Middle Eastern respiratory syndrome coronavirus and pulmonary tuberculosis," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    2. Khan, Tahir & Ullah, Zakir & Ali, Nigar & Zaman, Gul, 2019. "Modeling and control of the hepatitis B virus spreading using an epidemic model," Chaos, Solitons & Fractals, Elsevier, vol. 124(C), pages 1-9.
    3. Asamoah, Joshua Kiddy K. & Owusu, Mark A. & Jin, Zhen & Oduro, F. T. & Abidemi, Afeez & Gyasi, Esther Opoku, 2020. "Global stability and cost-effectiveness analysis of COVID-19 considering the impact of the environment: using data from Ghana," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    4. Irena, Tsegaye Kebede & Gakkhar, Sunita, 2021. "Modelling the dynamics of antimicrobial-resistant typhoid infection with environmental transmission," Applied Mathematics and Computation, Elsevier, vol. 401(C).
    5. Mohammadi, Hakimeh & Kumar, Sunil & Rezapour, Shahram & Etemad, Sina, 2021. "A theoretical study of the Caputo–Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    6. Abboubakar, Hamadjam & Kombou, Lausaire Kemayou & Koko, Adamou Dang & Fouda, Henri Paul Ekobena & Kumar, Anoop, 2021. "Projections and fractional dynamics of the typhoid fever: A case study of Mbandjock in the Centre Region of Cameroon," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    7. Mohammed H. Alharbi & Fawaz K. Alalhareth & Mahmoud A. Ibrahim, 2023. "Analyzing the Dynamics of a Periodic Typhoid Fever Transmission Model with Imperfect Vaccination," Mathematics, MDPI, vol. 11(15), pages 1-26, July.
    8. Sanubari Tansah Tresna & Subiyanto & Sudradjat Supian, 2022. "Mathematical Models for Typhoid Disease Transmission: A Systematic Literature Review," Mathematics, MDPI, vol. 10(14), pages 1-12, July.
    9. Hossain, Mainul & Pal, Nikhil & Samanta, Sudip, 2020. "Impact of fear on an eco-epidemiological model," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    10. Yuan, Yiran & Li, Ning, 2022. "Optimal control and cost-effectiveness analysis for a COVID-19 model with individual protection awareness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    11. Abboubakar, Hamadjam & Racke, Reinhard, 2021. "Mathematical modeling, forecasting, and optimal control of typhoid fever transmission dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 149(C).
    12. Din, Anwarud & Li, Yongjin & Khan, Tahir & Zaman, Gul, 2020. "Mathematical analysis of spread and control of the novel corona virus (COVID-19) in China," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    13. Tingting Xue & Xiaolin Fan & Yan Xu, 2023. "Kinetic Behavior and Optimal Control of a Fractional-Order Hepatitis B Model," Mathematics, MDPI, vol. 11(17), pages 1-18, August.
    14. Rana Yousif & Aref Jeribi & Saad Al-Azzawi, 2023. "Fractional-Order SEIRD Model for Global COVID-19 Outbreak," Mathematics, MDPI, vol. 11(4), pages 1-19, February.
    15. Kar, T.K. & Nandi, Swapan Kumar & Jana, Soovoojeet & Mandal, Manotosh, 2019. "Stability and bifurcation analysis of an epidemic model with the effect of media," Chaos, Solitons & Fractals, Elsevier, vol. 120(C), pages 188-199.
    16. Juhui Yan & Wanqin Wu & Qing Miao & Xuewen Tan, 2024. "Global Dynamics and Optimal Control of a Fractional-Order SIV Epidemic Model with Nonmonotonic Occurrence Rate," Mathematics, MDPI, vol. 12(17), pages 1-21, September.
    17. Luping Li & Shugui Kang & Lili Kong & Huiqin Chen, 2019. "Minimal Wave Speed in a Competitive Integrodifference System without Comparison Principle," Mathematics, MDPI, vol. 7(7), pages 1-11, June.
    18. Hoang, Manh Tuan, 2023. "Dynamical analysis of a generalized hepatitis B epidemic model and its dynamically consistent discrete model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 205(C), pages 291-314.
    19. Parsamanesh, Mahmood & Erfanian, Majid, 2021. "Stability and bifurcations in a discrete-time SIVS model with saturated incidence rate," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    20. Das, Tanuja & Srivastava, Prashant K., 2023. "Effect of a novel generalized incidence rate function in SIR model: Stability switches and bifurcations," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:7:y:2019:i:12:p:1157-:d:292842. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.