IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v158y2022ics0960077922002077.html
   My bibliography  Save this article

Repercussions of unreported populace on disease dynamics and its optimal control through system of fractional order delay differential equations

Author

Listed:
  • Alzahrani, Faris
  • Razzaq, Oyoon Abdul
  • Rehman, Daniyal Ur
  • Khan, Najeeb Alam
  • Alshomrani, Ali Saleh
  • Ullah, Malik Zaka

Abstract

Among many other factors that affect the preventive interventions to any infectious disease, not reporting timely in a hospital is also one of the catastrophic behavior of human beings in any society. Similarly, masses who do not report make it difficult for healthcare researchers to measure the actual data and develop prevention strategies, accordingly. Therefore, there is a critical need to structure a potential epidemic model with the unreported class of individuals. This novel idea is deliberated in this paper to study the profiles of the epidemic model of virulent diseases due to the individuals that report timely and those who don't report in hospitals for any reason. Mathematically, a system of seven equations is taken into consideration, which describes the susceptible individuals, exposed, people who do not report to the hospital and those who report to the hospital, and individuals who are quarantined, infected, and recovered. So, with the consideration of new compartments, the conventional SIR epidemic model expands to SEURRPQIR. The innovative design is made more realistic by utilizing proportional fractional-order differential equations with time delay. A special simplified expansion of this derivative reduces its computational cost and produces the results with fractional index, which helps to predict each fractional change. In addition, an optimal control methodology is also carried out to analyze the effectiveness of the awareness campaign in shifting the unreported individuals to the reported class, with optimal cost function for the unreported cases. Discussions are supported through the very recent deadly pandemic as an example to conclude the practical advantage of the model. The sensitivity analysis of basic reproduction numbers based on effective awareness campaigns is also the part of this study, which infers public awareness campaigns may be devised to motivate and guide such individuals to approach any healthcare center or a hospital.

Suggested Citation

  • Alzahrani, Faris & Razzaq, Oyoon Abdul & Rehman, Daniyal Ur & Khan, Najeeb Alam & Alshomrani, Ali Saleh & Ullah, Malik Zaka, 2022. "Repercussions of unreported populace on disease dynamics and its optimal control through system of fractional order delay differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
  • Handle: RePEc:eee:chsofr:v:158:y:2022:i:c:s0960077922002077
    DOI: 10.1016/j.chaos.2022.111997
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922002077
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.111997?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Naik, Parvaiz Ahmad & Zu, Jian & Owolabi, Kolade M., 2020. "Global dynamics of a fractional order model for the transmission of HIV epidemic with optimal control," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    2. Wang, Yi & Cao, Jinde & Sun, Gui-Quan & Li, Jing, 2014. "Effect of time delay on pattern dynamics in a spatial epidemic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 412(C), pages 137-148.
    3. Meghadri Das & Guruprasad Samanta & Manuel De la Sen, 2021. "Stability Analysis and Optimal Control of a Fractional Order Synthetic Drugs Transmission Model," Mathematics, MDPI, vol. 9(7), pages 1-34, March.
    4. Sharma, Natasha & Gupta, Arvind Kumar, 2017. "Impact of time delay on the dynamics of SEIR epidemic model using cellular automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 114-125.
    5. Zhang, Zizhen & Kundu, Soumen & Tripathi, Jai Prakash & Bugalia, Sarita, 2020. "Stability and Hopf bifurcation analysis of an SVEIR epidemic model with vaccination and multiple time delays," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    6. Sene, Ndolane, 2020. "SIR epidemic model with Mittag–Leffler fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joshi, Divya D. & Bhalekar, Sachin & Gade, Prashant M., 2023. "Controlling fractional difference equations using feedback," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sharma, Natasha & Verma, Atul Kumar & Gupta, Arvind Kumar, 2021. "Spatial network based model forecasting transmission and control of COVID-19," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    2. Asamoah, Joshua Kiddy K. & Owusu, Mark A. & Jin, Zhen & Oduro, F. T. & Abidemi, Afeez & Gyasi, Esther Opoku, 2020. "Global stability and cost-effectiveness analysis of COVID-19 considering the impact of the environment: using data from Ghana," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    3. Cao, Yan & Zhou, Wei-Jie & Liu, Xiao-Zhen & Wu, Kai-Ning, 2024. "Passivity of fractional reaction-diffusion systems," Applied Mathematics and Computation, Elsevier, vol. 476(C).
    4. Mann Manyombe, M.L. & Tsanou, B. & Mbang, J. & Bowong, S., 2017. "A metapopulation model for the population dynamics of anopheles mosquito," Applied Mathematics and Computation, Elsevier, vol. 307(C), pages 71-91.
    5. Ullah, Mohammad Sharif & Higazy, M. & Kabir, K.M. Ariful, 2022. "Dynamic analysis of mean-field and fractional-order epidemic vaccination strategies by evolutionary game approach," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    6. Junseok Kim, 2024. "Influence of Fractional Order on the Behavior of a Normalized Time-Fractional SIR Model," Mathematics, MDPI, vol. 12(19), pages 1-9, October.
    7. Liu, Qun & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2018. "Dynamics of a stochastic tuberculosis model with antibiotic resistance," Chaos, Solitons & Fractals, Elsevier, vol. 109(C), pages 223-230.
    8. Samad Noeiaghdam & Sanda Micula & Juan J. Nieto, 2021. "A Novel Technique to Control the Accuracy of a Nonlinear Fractional Order Model of COVID-19: Application of the CESTAC Method and the CADNA Library," Mathematics, MDPI, vol. 9(12), pages 1-26, June.
    9. Bansal, Komal & Mathur, Trilok & Agarwal, Shivi, 2023. "Fractional-order crime propagation model with non-linear transmission rate," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    10. Abidemi, Afeez & Owolabi, Kolade M. & Pindza, Edson, 2022. "Modelling the transmission dynamics of Lassa fever with nonlinear incidence rate and vertical transmission," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    11. Protyusha Dutta & Nirapada Santra & Guruprasad Samanta & Manuel De la Sen, 2024. "Nonlinear SIRS Fractional-Order Model: Analysing the Impact of Public Attitudes towards Vaccination, Government Actions, and Social Behavior on Disease Spread," Mathematics, MDPI, vol. 12(14), pages 1-29, July.
    12. Higazy, M., 2020. "Novel fractional order SIDARTHE mathematical model of COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    13. Joshi, Divya D. & Bhalekar, Sachin & Gade, Prashant M., 2023. "Controlling fractional difference equations using feedback," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    14. Omame, Andrew & Abbas, Mujahid & Abdel-Aty, Abdel-Haleem, 2022. "Assessing the impact of SARS-CoV-2 infection on the dynamics of dengue and HIV via fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    15. Jang, Junyoung & Kwon, Hee-Dae & Lee, Jeehyun, 2020. "Optimal control problem of an SIR reaction–diffusion model with inequality constraints," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 171(C), pages 136-151.
    16. Hernández Guillén, J.D. & Martín del Rey, A. & Hernández Encinas, L., 2017. "Study of the stability of a SEIRS model for computer worm propagation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 411-421.
    17. Xinyu Liu & Yuting Ding, 2022. "Stability and Numerical Simulations of a New SVIR Model with Two Delays on COVID-19 Booster Vaccination," Mathematics, MDPI, vol. 10(10), pages 1-27, May.
    18. Mangal, Shiv & Misra, O.P. & Dhar, Joydip, 2023. "Fractional-order deterministic epidemic model for the spread and control of HIV/AIDS with special reference to Mexico and India," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 210(C), pages 82-102.
    19. Addai, Emmanuel & Zhang, Lingling & Ackora-Prah, Joseph & Gordon, Joseph Frank & Asamoah, Joshua Kiddy K. & Essel, John Fiifi, 2022. "Fractal-fractional order dynamics and numerical simulations of a Zika epidemic model with insecticide-treated nets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    20. Li, Li, 2015. "Patch invasion in a spatial epidemic model," Applied Mathematics and Computation, Elsevier, vol. 258(C), pages 342-349.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:158:y:2022:i:c:s0960077922002077. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.