IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0082578.html
   My bibliography  Save this article

Resilience and Controllability of Dynamic Collective Behaviors

Author

Listed:
  • Mohammad Komareji
  • Roland Bouffanais

Abstract

The network paradigm is used to gain insight into the structural root causes of the resilience of consensus in dynamic collective behaviors, and to analyze the controllability of the swarm dynamics. Here we devise the dynamic signaling network which is the information transfer channel underpinning the swarm dynamics of the directed interagent connectivity based on a topological neighborhood of interactions. The study of the connectedness of the swarm signaling network reveals the profound relationship between group size and number of interacting neighbors, which is found to be in good agreement with field observations on flock of starlings [Ballerini et al. (2008) Proc. Natl. Acad. Sci. USA, 105: 1232]. Using a dynamical model, we generate dynamic collective behaviors enabling us to uncover that the swarm signaling network is a homogeneous clustered small-world network, thus facilitating emergent outcomes if connectedness is maintained. Resilience of the emergent consensus is tested by introducing exogenous environmental noise, which ultimately stresses how deeply intertwined are the swarm dynamics in the physical and network spaces. The availability of the signaling network allows us to analytically establish for the first time the number of driver agents necessary to fully control the swarm dynamics.

Suggested Citation

  • Mohammad Komareji & Roland Bouffanais, 2013. "Resilience and Controllability of Dynamic Collective Behaviors," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-15, December.
  • Handle: RePEc:plo:pone00:0082578
    DOI: 10.1371/journal.pone.0082578
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0082578
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0082578&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0082578?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Graciano Dieck Kattas & Xiao-Ke Xu & Michael Small, 2012. "Dynamical Modeling of Collective Behavior from Pigeon Flight Data: Flock Cohesion and Dispersion," PLOS Computational Biology, Public Library of Science, vol. 8(3), pages 1-15, March.
    2. Máté Nagy & Zsuzsa Ákos & Dora Biro & Tamás Vicsek, 2010. "Hierarchical group dynamics in pigeon flocks," Nature, Nature, vol. 464(7290), pages 890-893, April.
    3. Mirabet, Vincent & Auger, Pierre & Lett, Christophe, 2007. "Spatial structures in simulations of animal grouping," Ecological Modelling, Elsevier, vol. 201(3), pages 468-476.
    4. Zhengzhong Yuan & Chen Zhao & Zengru Di & Wen-Xu Wang & Ying-Cheng Lai, 2013. "Exact controllability of complex networks," Nature Communications, Nature, vol. 4(1), pages 1-9, December.
    5. Iain D. Couzin & Jens Krause & Nigel R. Franks & Simon A. Levin, 2005. "Effective leadership and decision-making in animal groups on the move," Nature, Nature, vol. 433(7025), pages 513-516, February.
    6. Duncan J. Watts & Steven H. Strogatz, 1998. "Collective dynamics of ‘small-world’ networks," Nature, Nature, vol. 393(6684), pages 440-442, June.
    7. Kai Nagel, 1996. "Particle Hopping Models and Traffic Flow Theory," Working Papers 96-04-015, Santa Fe Institute.
    8. Tao Jia & Yang-Yu Liu & Endre Csóka & Márton Pósfai & Jean-Jacques Slotine & Albert-László Barabási, 2013. "Emergence of bimodality in controlling complex networks," Nature Communications, Nature, vol. 4(1), pages 1-6, October.
    9. Dirk Helbing & Joachim Keltsch & Péter Molnár, 1997. "Modelling the evolution of human trail systems," Nature, Nature, vol. 388(6637), pages 47-50, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tamás Nepusz & Tamás Vicsek, 2013. "Hierarchical Self-Organization of Non-Cooperating Individuals," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-9, December.
    2. Roy Harpaz & Minh Nguyet Nguyen & Armin Bahl & Florian Engert, 2021. "Precise visuomotor transformations underlying collective behavior in larval zebrafish," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    3. Li, Qing & Zhang, Lingwei & Jia, Yongnan & Lu, Tianzhao & Chen, Xiaojie, 2022. "Modeling, analysis, and optimization of three-dimensional restricted visual field metric-free swarms," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    4. Panpan Yang & Maode Yan & Jiacheng Song & Ye Tang, 2019. "Self-Organized Fission-Fusion Control Algorithm for Flocking Systems Based on Intermittent Selective Interaction," Complexity, Hindawi, vol. 2019, pages 1-12, February.
    5. Kong, Decheng & Xue, Kai & Wang, Ping, 2024. "Collective queuing motion of self-propelled particles with leadership and experience," Applied Mathematics and Computation, Elsevier, vol. 476(C).
    6. Pakpour, Fatemeh & Vicsek, Tamás, 2024. "Delay-induced phase transitions in active matter," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 634(C).
    7. Graciano Dieck Kattas & Xiao-Ke Xu & Michael Small, 2012. "Dynamical Modeling of Collective Behavior from Pigeon Flight Data: Flock Cohesion and Dispersion," PLOS Computational Biology, Public Library of Science, vol. 8(3), pages 1-15, March.
    8. Yandong Xiao & Chuliang Song & Liang Tian & Yang-Yu Liu, 2019. "Accelerating The Emergence Of Order In Swarming Systems," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 23(01), pages 1-12, December.
    9. Albert B Kao & Noam Miller & Colin Torney & Andrew Hartnett & Iain D Couzin, 2014. "Collective Learning and Optimal Consensus Decisions in Social Animal Groups," PLOS Computational Biology, Public Library of Science, vol. 10(8), pages 1-11, August.
    10. Yude Fu & Jing Zhu & Xiang Li & Xu Han & Wenhui Tan & Qizi Huangpeng & Xiaojun Duan, 2024. "Research on Group Behavior Modeling and Individual Interaction Modes with Informed Leaders," Mathematics, MDPI, vol. 12(8), pages 1-23, April.
    11. Halloway, Abdel H. & Malone, Margaret A. & Brown, Joel S., 2020. "Unstable population dynamics in obligate co-operators," Theoretical Population Biology, Elsevier, vol. 136(C), pages 1-11.
    12. Aming Li & Yang-Yu Liu, 2020. "Controlling Network Dynamics," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 22(07n08), pages 1-19, February.
    13. Li Jiang & Luca Giuggioli & Andrea Perna & Ramón Escobedo & Valentin Lecheval & Clément Sire & Zhangang Han & Guy Theraulaz, 2017. "Identifying influential neighbors in animal flocking," PLOS Computational Biology, Public Library of Science, vol. 13(11), pages 1-32, November.
    14. Simon Levin & Anastasios Xepapadeas, 2021. "On the Coevolution of Economic and Ecological Systems," Annual Review of Resource Economics, Annual Reviews, vol. 13(1), pages 355-377, October.
    15. Huan Wang & Chuang Ma & Han-Shuang Chen & Ying-Cheng Lai & Hai-Feng Zhang, 2022. "Full reconstruction of simplicial complexes from binary contagion and Ising data," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    16. Vinayak, & Raghuvanshi, Adarsh & kshitij, Avinash, 2023. "Signatures of capacity development through research collaborations in artificial intelligence and machine learning," Journal of Informetrics, Elsevier, vol. 17(1).
    17. Supriya Tiwari & Pallavi Basu, 2024. "Quasi-randomization tests for network interference," Papers 2403.16673, arXiv.org, revised Oct 2024.
    18. Becco, Ch. & Vandewalle, N. & Delcourt, J. & Poncin, P., 2006. "Experimental evidences of a structural and dynamical transition in fish school," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 487-493.
    19. Bhatia, Nikhil & Gupta, Arvind Kumar, 2023. "Role of site-wise dynamic defects in a resource-constrained exclusion process," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    20. Anzhi Sheng & Qi Su & Aming Li & Long Wang & Joshua B. Plotkin, 2023. "Constructing temporal networks with bursty activity patterns," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0082578. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.