IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2403.16673.html
   My bibliography  Save this paper

Quasi-randomization tests for network interference

Author

Listed:
  • Supriya Tiwari
  • Pallavi Basu

Abstract

Network interference amounts to the treatment status of one unit affecting the potential outcome of other units in the population. Testing for spillover effects in this setting makes the null hypothesis non-sharp. An interesting approach to tackling the non-sharp nature of the null hypothesis in this setup is constructing conditional randomization tests such that the null is sharp on the restricted population. Such approaches can pose computational challenges as finding these appropriate sub-populations based on experimental design can involve solving an NP-hard problem. In this paper, we view the network amongst the population as a random variable instead of being fixed. We propose a new approach that builds a conditional quasi-randomization test. We build the (non-sharp) null distribution of no spillover effects using random graph null models. We show that our method is exactly valid in finite samples under mild assumptions. Our method displays enhanced power over other methods, substantially improving cluster randomized trials. We illustrate our methodology to test for interference in a weather insurance adoption experiment run in rural China.

Suggested Citation

  • Supriya Tiwari & Pallavi Basu, 2024. "Quasi-randomization tests for network interference," Papers 2403.16673, arXiv.org, revised Oct 2024.
  • Handle: RePEc:arx:papers:2403.16673
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2403.16673
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eckles Dean & Karrer Brian & Ugander Johan, 2017. "Design and Analysis of Experiments in Networks: Reducing Bias from Interference," Journal of Causal Inference, De Gruyter, vol. 5(1), pages 1-23, March.
    2. Charles F. Manski, 2013. "Identification of treatment response with social interactions," Econometrics Journal, Royal Economic Society, vol. 16(1), pages 1-23, February.
    3. Lawrence E. Blume & William A. Brock & Steven N. Durlauf & Rajshri Jayaraman, 2015. "Linear Social Interactions Models," Journal of Political Economy, University of Chicago Press, vol. 123(2), pages 444-496.
    4. Susan Athey & Dean Eckles & Guido W. Imbens, 2018. "Exact p-Values for Network Interference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(521), pages 230-240, January.
    5. Charles F. Manski, 1993. "Identification of Endogenous Social Effects: The Reflection Problem," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 60(3), pages 531-542.
    6. Sobel, Michael E., 2006. "What Do Randomized Studies of Housing Mobility Demonstrate?: Causal Inference in the Face of Interference," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1398-1407, December.
    7. Duncan J. Watts & Steven H. Strogatz, 1998. "Collective dynamics of ‘small-world’ networks," Nature, Nature, vol. 393(6684), pages 440-442, June.
    8. Guido W. Imbens & Charles F. Manski, 2004. "Confidence Intervals for Partially Identified Parameters," Econometrica, Econometric Society, vol. 72(6), pages 1845-1857, November.
    9. Eckles Dean & Karrer Brian & Ugander Johan, 2017. "Design and Analysis of Experiments in Networks: Reducing Bias from Interference," Journal of Causal Inference, De Gruyter, vol. 5(1), pages 1-23, March.
    10. Bowers, Jake & Fredrickson, Mark M. & Panagopoulos, Costas, 2013. "Reasoning about Interference Between Units: A General Framework," Political Analysis, Cambridge University Press, vol. 21(1), pages 97-124, January.
    11. Jing Cai & Alain De Janvry & Elisabeth Sadoulet, 2015. "Social Networks and the Decision to Insure," American Economic Journal: Applied Economics, American Economic Association, vol. 7(2), pages 81-108, April.
    12. Michael P. Leung, 2020. "Treatment and Spillover Effects Under Network Interference," The Review of Economics and Statistics, MIT Press, vol. 102(2), pages 368-380, May.
    13. J Pouget-Abadie & G Saint-Jacques & M Saveski & W Duan & S Ghosh & Y Xu & E M Airoldi, 2019. "Testing for arbitrary interference on experimentation platforms," Biometrika, Biometrika Trust, vol. 106(4), pages 929-940.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Davide Viviano, 2020. "Experimental Design under Network Interference," Papers 2003.08421, arXiv.org, revised Jul 2022.
    2. Zhaonan Qu & Ruoxuan Xiong & Jizhou Liu & Guido Imbens, 2021. "Semiparametric Estimation of Treatment Effects in Observational Studies with Heterogeneous Partial Interference," Papers 2107.12420, arXiv.org, revised Jun 2024.
    3. Vazquez-Bare, Gonzalo, 2023. "Identification and estimation of spillover effects in randomized experiments," Journal of Econometrics, Elsevier, vol. 237(1).
    4. Stefan Wager & Kuang Xu, 2021. "Experimenting in Equilibrium," Management Science, INFORMS, vol. 67(11), pages 6694-6715, November.
    5. Davide Viviano & Jess Rudder, 2020. "Policy design in experiments with unknown interference," Papers 2011.08174, arXiv.org, revised May 2024.
    6. Davide Viviano & Lihua Lei & Guido Imbens & Brian Karrer & Okke Schrijvers & Liang Shi, 2023. "Causal clustering: design of cluster experiments under network interference," Papers 2310.14983, arXiv.org, revised Jan 2024.
    7. Anish Agarwal & Sarah H. Cen & Devavrat Shah & Christina Lee Yu, 2022. "Network Synthetic Interventions: A Causal Framework for Panel Data Under Network Interference," Papers 2210.11355, arXiv.org, revised Oct 2023.
    8. Davide Viviano, 2019. "Policy Targeting under Network Interference," Papers 1906.10258, arXiv.org, revised Apr 2024.
    9. C. Tort`u & I. Crimaldi & F. Mealli & L. Forastiere, 2020. "Modelling Network Interference with Multi-valued Treatments: the Causal Effect of Immigration Policy on Crime Rates," Papers 2003.10525, arXiv.org, revised Jun 2020.
    10. Stefan Wager & Kuang Xu, 2019. "Experimenting in Equilibrium," Papers 1903.02124, arXiv.org, revised Jun 2020.
    11. Gonzalo Vazquez-Bare, 2017. "Identification and Estimation of Spillover Effects in Randomized Experiments," Papers 1711.02745, arXiv.org, revised Jan 2022.
    12. Yuchen Hu & Shuangning Li & Stefan Wager, 2021. "Average Direct and Indirect Causal Effects under Interference," Papers 2104.03802, arXiv.org, revised Jan 2022.
    13. Yann Bramoullé & Habiba Djebbari & Bernard Fortin, 2020. "Peer Effects in Networks: A Survey," Annual Review of Economics, Annual Reviews, vol. 12(1), pages 603-629, August.
    14. Julius Owusu, 2023. "Randomization Inference of Heterogeneous Treatment Effects under Network Interference," Papers 2308.00202, arXiv.org, revised Jan 2025.
    15. Han, Kevin & Basse, Guillaume & Bojinov, Iavor, 2024. "Population interference in panel experiments," Journal of Econometrics, Elsevier, vol. 238(1).
    16. Chabé-Ferret, Sylvain & Reynaud, Arnaud & Tène, Eva, 2021. "Water Quality, Policy Diffusion Effects and Farmers’ Behavior," TSE Working Papers 21-1229, Toulouse School of Economics (TSE).
    17. Michael P. Leung, 2022. "Causal Inference Under Approximate Neighborhood Interference," Econometrica, Econometric Society, vol. 90(1), pages 267-293, January.
    18. David Puelz & Guillaume Basse & Avi Feller & Panos Toulis, 2022. "A graph‐theoretic approach to randomization tests of causal effects under general interference," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(1), pages 174-204, February.
    19. Jochmans, Koen, 2023. "Peer effects and endogenous social interactions," Journal of Econometrics, Elsevier, vol. 235(2), pages 1203-1214.
    20. Michael P. Leung, 2020. "Treatment and Spillover Effects Under Network Interference," The Review of Economics and Statistics, MIT Press, vol. 102(2), pages 368-380, May.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2403.16673. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.