IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v164y2022ics0960077922008281.html
   My bibliography  Save this article

Stability of a fractional advection–diffusion system with conformable derivative

Author

Listed:
  • Arfaoui, Hassen
  • Ben Makhlouf, Abdellatif

Abstract

This paper investigates the stability of fractional advection–diffusion system with conformable derivative in infinite time interval. We have established new exponential stability results for a such system in different Hilbert spaces. Then, thanks to numerical methods for solving systems with conformable derivative, we were able to justify numerically the theoretical results obtained.

Suggested Citation

  • Arfaoui, Hassen & Ben Makhlouf, Abdellatif, 2022. "Stability of a fractional advection–diffusion system with conformable derivative," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
  • Handle: RePEc:eee:chsofr:v:164:y:2022:i:c:s0960077922008281
    DOI: 10.1016/j.chaos.2022.112649
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922008281
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112649?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ghanbari, Behzad & Günerhan, Hatıra & Srivastava, H.M., 2020. "An application of the Atangana-Baleanu fractional derivative in mathematical biology: A three-species predator-prey model," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    2. Ghanbari, Behzad & Kumar, Sunil & Kumar, Ranbir, 2020. "A study of behaviour for immune and tumor cells in immunogenetic tumour model with non-singular fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    3. Salahshour, Soheil & Ahmadian, Ali & Allahviranloo, Tofigh, 2021. "A new fractional dynamic cobweb model based on nonsingular kernel derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    4. Abdellatif Ben Makhlouf & El-Sayed El-Hady & Salah Boulaaras & Mohamed Ali Hammami & Sundarapandian Vaidyanathan, 2022. "Stability Analysis for Differential Equations of the General Conformable Type," Complexity, Hindawi, vol. 2022, pages 1-6, April.
    5. Arfaoui, Hassen & Ben Makhlouf, Abdellatif, 2022. "Stability of a time fractional advection-diffusion system," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    6. Singh, Jagdev & Kumar, Devendra & Hammouch, Zakia & Atangana, Abdon, 2018. "A fractional epidemiological model for computer viruses pertaining to a new fractional derivative," Applied Mathematics and Computation, Elsevier, vol. 316(C), pages 504-515.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arfaoui, Hassen & Ben Makhlouf, Abdellatif, 2022. "Stability of a time fractional advection-diffusion system," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    2. Ravichandran, C. & Logeswari, K. & Panda, Sumati Kumari & Nisar, Kottakkaran Sooppy, 2020. "On new approach of fractional derivative by Mittag-Leffler kernel to neutral integro-differential systems with impulsive conditions," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    3. Gao, Fei & Li, Xiling & Li, Wenqin & Zhou, Xianjin, 2021. "Stability analysis of a fractional-order novel hepatitis B virus model with immune delay based on Caputo-Fabrizio derivative," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    4. Abdel-Gawad, Hamdy I. & Baleanu, Dumitru & Abdel-Gawad, Ahmed H., 2021. "Unification of the different fractional time derivatives: An application to the epidemic-antivirus dynamical system in computer networks," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    5. Prakash, Amit & Kaur, Hardish, 2021. "Analysis and numerical simulation of fractional Biswas–Milovic model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 298-315.
    6. Dwivedi, Kushal Dhar & Singh, Jagdev, 2021. "Numerical solution of two-dimensional fractional-order reaction advection sub-diffusion equation with finite-difference Fibonacci collocation method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 38-50.
    7. H. Mesgarani & Y. Esmaeelzade Aghdam & A. Beiranvand & J. F. Gómez-Aguilar, 2024. "A Novel Approach to Fuzzy Based Efficiency Assessment of a Financial System," Computational Economics, Springer;Society for Computational Economics, vol. 63(4), pages 1609-1626, April.
    8. Solís-Pérez, J.E. & Gómez-Aguilar, J.F. & Atangana, A., 2018. "Novel numerical method for solving variable-order fractional differential equations with power, exponential and Mittag-Leffler laws," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 175-185.
    9. Sunil Kumar & Ali Ahmadian & Ranbir Kumar & Devendra Kumar & Jagdev Singh & Dumitru Baleanu & Mehdi Salimi, 2020. "An Efficient Numerical Method for Fractional SIR Epidemic Model of Infectious Disease by Using Bernstein Wavelets," Mathematics, MDPI, vol. 8(4), pages 1-22, April.
    10. ur Rahman, Ghaus & Agarwal, Ravi P. & Din, Qamar, 2019. "Mathematical analysis of giving up smoking model via harmonic mean type incidence rate," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 128-148.
    11. Shah, Kamal & Arfan, Muhammad & Ullah, Aman & Al-Mdallal, Qasem & Ansari, Khursheed J. & Abdeljawad, Thabet, 2022. "Computational study on the dynamics of fractional order differential equations with applications," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    12. Yavuz, Mehmet & Bonyah, Ebenezer, 2019. "New approaches to the fractional dynamics of schistosomiasis disease model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 373-393.
    13. Odibat, Zaid & Baleanu, Dumitru, 2023. "A new fractional derivative operator with generalized cardinal sine kernel: Numerical simulation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 212(C), pages 224-233.
    14. Abdellatif Ben Makhlouf & Lassaad Mchiri & Hakeem A. Othman & Hafedh M. S. Rguigui & Salah Boulaaras, 2023. "Proportional Itô–Doob Stochastic Fractional Order Systems," Mathematics, MDPI, vol. 11(9), pages 1-14, April.
    15. Ghalib, M. Mansha & Zafar, Azhar A. & Riaz, M. Bilal & Hammouch, Z. & Shabbir, Khurram, 2020. "Analytical approach for the steady MHD conjugate viscous fluid flow in a porous medium with nonsingular fractional derivative," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    16. Gao, Wei & Veeresha, P. & Prakasha, D.G. & Baskonus, Haci Mehmet & Yel, Gulnur, 2020. "New approach for the model describing the deathly disease in pregnant women using Mittag-Leffler function," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    17. Ameen, Ismail Gad & Baleanu, Dumitru & Ali, Hegagi Mohamed, 2022. "Different strategies to confront maize streak disease based on fractional optimal control formulation," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    18. Baleanu, Dumitru & Jajarmi, Amin & Mohammadi, Hakimeh & Rezapour, Shahram, 2020. "A new study on the mathematical modelling of human liver with Caputo–Fabrizio fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    19. Rahman, Mati ur & Arfan, Muhammad & Shah, Kamal & Gómez-Aguilar, J.F., 2020. "Investigating a nonlinear dynamical model of COVID-19 disease under fuzzy caputo, random and ABC fractional order derivative," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    20. Ahmad, Shabir & Ullah, Aman & Akgül, Ali, 2021. "Investigating the complex behaviour of multi-scroll chaotic system with Caputo fractal-fractional operator," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:164:y:2022:i:c:s0960077922008281. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.