IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i19p3073-d1489875.html
   My bibliography  Save this article

New Coupled Optical Solitons to Birefringent Fibers for Complex Ginzburg–Landau Equations with Hamiltonian Perturbations and Kerr Law Nonlinearity

Author

Listed:
  • Emmanuel Yomba

    (Department of Mathematics, and Interdisciplinary Research Institute for the Sciences (IRIS), California State University Northridge, Northridge, CA 91330-8313, USA)

  • Poonam Ramchandra Nair

    (Department of Mathematics, and Interdisciplinary Research Institute for the Sciences (IRIS), California State University Northridge, Northridge, CA 91330-8313, USA)

Abstract

In this study, we use an analytical method tailored for the in-depth exploration of coupled nonlinear partial differential equations (NLPDEs), with a primary focus on the dynamics of solitons. Traditional methods are quite effective for solving individual nonlinear partial differential equations (NLPDEs). However, their performance diminishes notably when addressing systems of coupled NLPDEs. This decline in effectiveness is mainly due to the complex interaction terms that arise in these coupled systems. Commonly, researchers have attempted to simplify coupled NLPDEs into single equations by imposing proportional relationships between various solutions. Unfortunately, this simplification often leads to a significant deviation from the true physical phenomena that these equations aim to describe. Our approach is distinctively advantageous in its straightforwardness and precision, offering a clearer and more insightful analytical perspective for examining coupled NLPDEs. It is capable of concurrently facilitating the propagation of different soliton types in two distinct systems through a single process. It also supports the spontaneous emergence of similar solitons in both systems with minimal restrictions. It has been extensively used to investigate a wide array of new coupled progressive solitons in birefringent fibers, specifically for complex Ginzburg–Landau Equations (CGLEs) involving Hamiltonian perturbations and Kerr law nonlinearity. The resulting solitons, with comprehensive 2D and 3D visualizations, showcase a variety of coupled soliton configurations, including several that are unprecedented in the field. This innovative approach not only addresses a significant gap in existing methodologies but also broadens the horizons for future research in optical communications and related disciplines.

Suggested Citation

  • Emmanuel Yomba & Poonam Ramchandra Nair, 2024. "New Coupled Optical Solitons to Birefringent Fibers for Complex Ginzburg–Landau Equations with Hamiltonian Perturbations and Kerr Law Nonlinearity," Mathematics, MDPI, vol. 12(19), pages 1-29, September.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:19:p:3073-:d:1489875
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/19/3073/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/19/3073/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ghanbari, Behzad & Günerhan, Hatıra & Srivastava, H.M., 2020. "An application of the Atangana-Baleanu fractional derivative in mathematical biology: A three-species predator-prey model," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    2. Triki, Houria & Zhou, Qin & Liu, Wenjun & Biswas, Anjan & Moraru, Luminita & Yıldırım, Yakup & Alshehri, Hashim M. & Belic, Milivoj R., 2022. "Chirped optical soliton propagation in birefringent fibers modeled by coupled Fokas-Lenells system," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sivalingam, S M & Kumar, Pushpendra & Trinh, Hieu & Govindaraj, V., 2024. "A novel L1-Predictor-Corrector method for the numerical solution of the generalized-Caputo type fractional differential equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 220(C), pages 462-480.
    2. Boukhouima, Adnane & Hattaf, Khalid & Lotfi, El Mehdi & Mahrouf, Marouane & Torres, Delfim F.M. & Yousfi, Noura, 2020. "Lyapunov functions for fractional-order systems in biology: Methods and applications," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    3. Hari Mohan Srivastava & Khaled M. Saad, 2020. "A Comparative Study of the Fractional-Order Clock Chemical Model," Mathematics, MDPI, vol. 8(9), pages 1-14, August.
    4. Li, Zhao & Huang, Chun, 2023. "Bifurcation, phase portrait, chaotic pattern and optical soliton solutions of the conformable Fokas–Lenells model in optical fibers," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    5. Arfaoui, Hassen & Ben Makhlouf, Abdellatif, 2022. "Stability of a time fractional advection-diffusion system," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    6. Zhu, Bo-Wei & Fang, Yin & Liu, Wei & Dai, Chao-Qing, 2022. "Predicting the dynamic process and model parameters of vector optical solitons under coupled higher-order effects via WL-tsPINN," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    7. Zhou, Qin & Triki, Houria & Xu, Jiakun & Zeng, Zhongliang & Liu, Wenjun & Biswas, Anjan, 2022. "Perturbation of chirped localized waves in a dual-power law nonlinear medium," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    8. Bonyah, Ebenezer & Akgül, Ali, 2021. "On solutions of an obesity model in the light of new type fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    9. Han, Tianyong & Li, Zhao & Li, Chenyu, 2023. "Bifurcation analysis, stationary optical solitons and exact solutions for generalized nonlinear Schrödinger equation with nonlinear chromatic dispersion and quintuple power-law of refractive index in ," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
    10. Arfaoui, Hassen & Ben Makhlouf, Abdellatif, 2022. "Stability of a fractional advection–diffusion system with conformable derivative," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    11. Chen, Liang-Yuan & Wu, Hong-Yu & Jiang, Li-Hong, 2024. "Partially nonlocal ring-like spatiotemporal superimposed second-order breathers under a harmonic potential," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:19:p:3073-:d:1489875. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.