IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v163y2022ics096007792200741x.html
   My bibliography  Save this article

On tempered Hilfer fractional derivatives with respect to functions and the associated fractional differential equations

Author

Listed:
  • Kucche, Kishor D.
  • Mali, Ashwini D.
  • Fernandez, Arran
  • Fahad, Hafiz Muhammad

Abstract

We investigate the Hilfer-type operator within the topic of tempered fractional calculus with respect to functions. This operator, the tempered Ψ-Hilfer derivative, is defined for the first time here, and its fundamental properties are studied, such as composition properties, function space mappings, and other functional analysis properties. We also consider fractional differential equations involving these operators, and establish existence, uniqueness, well-posedness, and stability results for such equations under suitable conditions.

Suggested Citation

  • Kucche, Kishor D. & Mali, Ashwini D. & Fernandez, Arran & Fahad, Hafiz Muhammad, 2022. "On tempered Hilfer fractional derivatives with respect to functions and the associated fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
  • Handle: RePEc:eee:chsofr:v:163:y:2022:i:c:s096007792200741x
    DOI: 10.1016/j.chaos.2022.112547
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007792200741X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112547?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fernandez, Arran & Özarslan, Mehmet Ali & Baleanu, Dumitru, 2019. "On fractional calculus with general analytic kernels," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 248-265.
    2. Dumitru Baleanu & Arran Fernandez, 2019. "On Fractional Operators and Their Classifications," Mathematics, MDPI, vol. 7(9), pages 1-10, September.
    3. Jingwei Deng & Weiyuan Ma & Kaiying Deng & Yingxing Li, 2020. "Tempered Mittag–Leffler Stability of Tempered Fractional Dynamical Systems," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-9, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luís P. Castro & Anabela S. Silva, 2023. "On the Existence and Stability of Solutions for a Class of Fractional Riemann–Liouville Initial Value Problems," Mathematics, MDPI, vol. 11(2), pages 1-22, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oscar Martínez-Fuentes & Fidel Meléndez-Vázquez & Guillermo Fernández-Anaya & José Francisco Gómez-Aguilar, 2021. "Analysis of Fractional-Order Nonlinear Dynamic Systems with General Analytic Kernels: Lyapunov Stability and Inequalities," Mathematics, MDPI, vol. 9(17), pages 1-29, August.
    2. Dumitru Baleanu & Arran Fernandez & Ali Akgül, 2020. "On a Fractional Operator Combining Proportional and Classical Differintegrals," Mathematics, MDPI, vol. 8(3), pages 1-13, March.
    3. Rahaman, Mostafijur & Mondal, Sankar Prasad & Alam, Shariful & Metwally, Ahmed Sayed M. & Salahshour, Soheil & Salimi, Mehdi & Ahmadian, Ali, 2022. "Manifestation of interval uncertainties for fractional differential equations under conformable derivative," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    4. Isah, Sunday Simon & Fernandez, Arran & Özarslan, Mehmet Ali, 2023. "On bivariate fractional calculus with general univariate analytic kernels," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    5. Marina Plekhanova & Guzel Baybulatova, 2020. "Multi-Term Fractional Degenerate Evolution Equations and Optimal Control Problems," Mathematics, MDPI, vol. 8(4), pages 1-9, April.
    6. Chaudhary, Naveed Ishtiaq & Raja, Muhammad Asif Zahoor & Khan, Zeshan Aslam & Mehmood, Ammara & Shah, Syed Muslim, 2022. "Design of fractional hierarchical gradient descent algorithm for parameter estimation of nonlinear control autoregressive systems," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    7. Faïçal Ndaïrou & Delfim F. M. Torres, 2023. "Pontryagin Maximum Principle for Incommensurate Fractional-Orders Optimal Control Problems," Mathematics, MDPI, vol. 11(19), pages 1-12, October.
    8. Shiri, Babak & Baleanu, Dumitru, 2023. "All linear fractional derivatives with power functions’ convolution kernel and interpolation properties," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    9. Gómez-Aguilar, J.F., 2020. "Chaos and multiple attractors in a fractal–fractional Shinriki’s oscillator model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    10. Maike A. F. dos Santos, 2019. "Mittag–Leffler Memory Kernel in Lévy Flights," Mathematics, MDPI, vol. 7(9), pages 1-13, August.
    11. Ravi P. Agarwal & Snezhana Hristova & Donal O’Regan, 2023. "Inequalities for Riemann–Liouville-Type Fractional Derivatives of Convex Lyapunov Functions and Applications to Stability Theory," Mathematics, MDPI, vol. 11(18), pages 1-23, September.
    12. El-Nabulsi, Rami Ahmad & Khalili Golmankhaneh, Alireza & Agarwal, Praveen, 2022. "On a new generalized local fractal derivative operator," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    13. Muhammad Samraiz & Ahsan Mehmood & Saima Naheed & Gauhar Rahman & Artion Kashuri & Kamsing Nonlaopon, 2022. "On Novel Fractional Operators Involving the Multivariate Mittag–Leffler Function," Mathematics, MDPI, vol. 10(21), pages 1-19, October.
    14. María Pilar Velasco & David Usero & Salvador Jiménez & Luis Vázquez & José Luis Vázquez-Poletti & Mina Mortazavi, 2020. "About Some Possible Implementations of the Fractional Calculus," Mathematics, MDPI, vol. 8(6), pages 1-22, June.
    15. Kumar, Sunil & Kumar, Ranbir & Cattani, Carlo & Samet, Bessem, 2020. "Chaotic behaviour of fractional predator-prey dynamical system," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    16. Acay, Bahar & Inc, Mustafa & Mustapha, Umar Tasiu & Yusuf, Abdullahi, 2021. "Fractional dynamics and analysis for a lana fever infectious ailment with Caputo operator," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    17. Agarwal, Praveen & Singh, Ram, 2020. "Modelling of transmission dynamics of Nipah virus (Niv): A fractional order Approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    18. Ávalos-Ruiz, L.F. & Gómez-Aguilar, J.F. & Atangana, A. & Owolabi, Kolade M., 2019. "On the dynamics of fractional maps with power-law, exponential decay and Mittag–Leffler memory," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 364-388.
    19. Aneesh S. Deogan & Roeland Dilz & Diego Caratelli, 2024. "On the Application of Fractional Derivative Operator Theory to the Electromagnetic Modeling of Frequency Dispersive Media," Mathematics, MDPI, vol. 12(7), pages 1-17, March.
    20. Raza, Ali & Ghaffari, Abuzar & Khan, Sami Ullah & Haq, Absar Ul & Khan, M. Ijaz & Khan, M. Riaz, 2022. "Non-singular fractional computations for the radiative heat and mass transfer phenomenon subject to mixed convection and slip boundary effects," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:163:y:2022:i:c:s096007792200741x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.