IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v161y2022ics0960077922005392.html
   My bibliography  Save this article

On a new generalized local fractal derivative operator

Author

Listed:
  • El-Nabulsi, Rami Ahmad
  • Khalili Golmankhaneh, Alireza
  • Agarwal, Praveen

Abstract

In this study, a new generalized local fractal derivative operator is introduced and we discuss its implications in classical systems through the Lagrangian and Hamiltonian formalisms. The variational approach has been proved to be practical to describe dissipative dynamical systems. Besides, the Hamiltonian formalism is characterized by the emergence of auxiliary constraints free from Dirac auxiliary functions. In field theory, it was found that both damped Klein-Gordon and Dirac equations are generalized, and for specific parameters, a field equation comparable to the Barut equation describing the electromagnetic interactions between N spin-1/2 particles in lepton physics is obtained. A Hamiltonian formulation of higher-order Lagrangian has been constructed and discussed as well. The reformulation of the problem based on fractal calculus has been also addressed in details and compared with the basic approach.

Suggested Citation

  • El-Nabulsi, Rami Ahmad & Khalili Golmankhaneh, Alireza & Agarwal, Praveen, 2022. "On a new generalized local fractal derivative operator," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
  • Handle: RePEc:eee:chsofr:v:161:y:2022:i:c:s0960077922005392
    DOI: 10.1016/j.chaos.2022.112329
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922005392
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112329?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dumitru Baleanu & Arran Fernandez, 2019. "On Fractional Operators and Their Classifications," Mathematics, MDPI, vol. 7(9), pages 1-10, September.
    2. Z. E. Musielak & N. Davachi & M. Rosario-Franco, 2020. "Lagrangians, Gauge Functions, and Lie Groups for Semigroup of Second-Order Differential Equations," Journal of Applied Mathematics, Hindawi, vol. 2020, pages 1-11, June.
    3. Musielak, Z.E., 2009. "General conditions for the existence of non-standard Lagrangians for dissipative dynamical systems," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 2645-2652.
    4. Kolwankar, Kiran M., 2021. "Exact local fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    5. Johannes Jahn, 2020. "Introduction to the Theory of Nonlinear Optimization," Springer Books, Springer, edition 4, number 978-3-030-42760-3, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Balankin, Alexander S. & Mena, Baltasar, 2023. "Vector differential operators in a fractional dimensional space, on fractals, and in fractal continua," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    2. Li, Peiluan & Han, Liqin & Xu, Changjin & Peng, Xueqing & Rahman, Mati ur & Shi, Sairu, 2023. "Dynamical properties of a meminductor chaotic system with fractal–fractional power law operator," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
    3. Agathiyan, A. & Gowrisankar, A. & Fataf, Nur Aisyah Abdul, 2024. "On the integral transform of fractal interpolation functions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 222(C), pages 209-224.
    4. Khalili Golmankhaneh, Alireza & Bongiorno, Donatella, 2024. "Exact solutions of some fractal differential equations," Applied Mathematics and Computation, Elsevier, vol. 472(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zdzislaw E. Musielak & Niyousha Davachi & Marialis Rosario-Franco, 2020. "Special Functions of Mathematical Physics: A Unified Lagrangian Formalism," Mathematics, MDPI, vol. 8(3), pages 1-17, March.
    2. Marina Plekhanova & Guzel Baybulatova, 2020. "Multi-Term Fractional Degenerate Evolution Equations and Optimal Control Problems," Mathematics, MDPI, vol. 8(4), pages 1-9, April.
    3. Song, Chuan-Jing & Zhang, Yi, 2017. "Conserved quantities for Hamiltonian systems on time scales," Applied Mathematics and Computation, Elsevier, vol. 313(C), pages 24-36.
    4. Faïçal Ndaïrou & Delfim F. M. Torres, 2023. "Pontryagin Maximum Principle for Incommensurate Fractional-Orders Optimal Control Problems," Mathematics, MDPI, vol. 11(19), pages 1-12, October.
    5. Shiri, Babak & Baleanu, Dumitru, 2023. "All linear fractional derivatives with power functions’ convolution kernel and interpolation properties," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    6. Oscar Martínez-Fuentes & Fidel Meléndez-Vázquez & Guillermo Fernández-Anaya & José Francisco Gómez-Aguilar, 2021. "Analysis of Fractional-Order Nonlinear Dynamic Systems with General Analytic Kernels: Lyapunov Stability and Inequalities," Mathematics, MDPI, vol. 9(17), pages 1-29, August.
    7. Diana T. Pham & Zdzislaw E. Musielak, 2023. "Non-Standard and Null Lagrangians for Nonlinear Dynamical Systems and Their Role in Population Dynamics," Mathematics, MDPI, vol. 11(12), pages 1-15, June.
    8. Velasco-Juan, M. & Fujioka, J., 2022. "Lagrangian nonlocal nonlinear Schrödinger equations," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    9. Rami Ahmad El-Nabulsi, 2015. "From Classical to Discrete Gravity through Exponential Non-Standard Lagrangians in General Relativity," Mathematics, MDPI, vol. 3(3), pages 1-19, August.
    10. C. Escudero & F. Lara & M. Sama, 2024. "Optimal Trade Characterizations in Multi-Asset Crypto-Financial Markets," Papers 2405.06854, arXiv.org.
    11. María Pilar Velasco & David Usero & Salvador Jiménez & Luis Vázquez & José Luis Vázquez-Poletti & Mina Mortazavi, 2020. "About Some Possible Implementations of the Fractional Calculus," Mathematics, MDPI, vol. 8(6), pages 1-22, June.
    12. Dumitru Baleanu & Arran Fernandez & Ali Akgül, 2020. "On a Fractional Operator Combining Proportional and Classical Differintegrals," Mathematics, MDPI, vol. 8(3), pages 1-13, March.
    13. Kucche, Kishor D. & Mali, Ashwini D. & Fernandez, Arran & Fahad, Hafiz Muhammad, 2022. "On tempered Hilfer fractional derivatives with respect to functions and the associated fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    14. Rahaman, Mostafijur & Mondal, Sankar Prasad & Alam, Shariful & Metwally, Ahmed Sayed M. & Salahshour, Soheil & Salimi, Mehdi & Ahmadian, Ali, 2022. "Manifestation of interval uncertainties for fractional differential equations under conformable derivative," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    15. Aneesh S. Deogan & Roeland Dilz & Diego Caratelli, 2024. "On the Application of Fractional Derivative Operator Theory to the Electromagnetic Modeling of Frequency Dispersive Media," Mathematics, MDPI, vol. 12(7), pages 1-17, March.
    16. Johannes Jahn, 2022. "Characterizations of the Set Less Order Relation in Nonconvex Set Optimization," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 523-544, June.
    17. Raza, Ali & Ghaffari, Abuzar & Khan, Sami Ullah & Haq, Absar Ul & Khan, M. Ijaz & Khan, M. Riaz, 2022. "Non-singular fractional computations for the radiative heat and mass transfer phenomenon subject to mixed convection and slip boundary effects," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    18. Artion Kashuri & Muhammad Samraiz & Gauhar Rahman & Zareen A. Khan, 2022. "Some New Beesack–Wirtinger-Type Inequalities Pertaining to Different Kinds of Convex Functions," Mathematics, MDPI, vol. 10(5), pages 1-20, February.
    19. Kumar, Devendra & Dubey, Ved Prakash & Dubey, Sarvesh & Singh, Jagdev & Alshehri, Ahmed Mohammed, 2023. "Computational analysis of local fractional partial differential equations in realm of fractal calculus," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    20. Isah, Sunday Simon & Fernandez, Arran & Özarslan, Mehmet Ali, 2023. "On bivariate fractional calculus with general univariate analytic kernels," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:161:y:2022:i:c:s0960077922005392. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.