IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i6p893-d366183.html
   My bibliography  Save this article

About Some Possible Implementations of the Fractional Calculus

Author

Listed:
  • María Pilar Velasco

    (Department of Applied Mathematics to the Information and Communications Technologies, Universidad Politécnica de Madrid, 28040 Madrid, Spain
    These authors contributed equally to this work.)

  • David Usero

    (Instituto de Matemática Interdisciplinar, Universidad Complutense de Madrid, 28040 Madrid, Spain
    These authors contributed equally to this work.)

  • Salvador Jiménez

    (Department of Applied Mathematics to the Information and Communications Technologies, Universidad Politécnica de Madrid, 28040 Madrid, Spain
    These authors contributed equally to this work.)

  • Luis Vázquez

    (Instituto de Matemática Interdisciplinar, Universidad Complutense de Madrid, 28040 Madrid, Spain
    These authors contributed equally to this work.)

  • José Luis Vázquez-Poletti

    (Instituto de Matemática Interdisciplinar, Universidad Complutense de Madrid, 28040 Madrid, Spain
    These authors contributed equally to this work.)

  • Mina Mortazavi

    (Department of Applied Mathematics, School of Mathematical Sciences, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
    These authors contributed equally to this work.)

Abstract

We present a partial panoramic view of possible contexts and applications of the fractional calculus. In this context, we show some different applications of fractional calculus to different models in ordinary differential equation (ODE) and partial differential equation (PDE) formulations ranging from the basic equations of mechanics to diffusion and Dirac equations.

Suggested Citation

  • María Pilar Velasco & David Usero & Salvador Jiménez & Luis Vázquez & José Luis Vázquez-Poletti & Mina Mortazavi, 2020. "About Some Possible Implementations of the Fractional Calculus," Mathematics, MDPI, vol. 8(6), pages 1-22, June.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:6:p:893-:d:366183
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/6/893/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/6/893/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dumitru Baleanu & Arran Fernandez, 2019. "On Fractional Operators and Their Classifications," Mathematics, MDPI, vol. 7(9), pages 1-10, September.
    2. Sheu, Long-Jye & Chen, Hsien-Keng & Chen, Juhn-Horng & Tam, Lap-Mou, 2007. "Chaotic dynamics of the fractionally damped Duffing equation," Chaos, Solitons & Fractals, Elsevier, vol. 32(4), pages 1459-1468.
    3. Gao, Xin & Yu, Juebang, 2005. "Chaos in the fractional order periodically forced complex Duffing’s oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 24(4), pages 1097-1104.
    4. Manuel Duarte Ortigueira & José Tenreiro Machado, 2019. "Fractional Derivatives: The Perspective of System Theory," Mathematics, MDPI, vol. 7(2), pages 1-14, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Md. Habibur Rahman & Muhammad I. Bhatti & Nicholas Dimakis, 2023. "Employing a Fractional Basis Set to Solve Nonlinear Multidimensional Fractional Differential Equations," Mathematics, MDPI, vol. 11(22), pages 1-15, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ge, Zheng-Ming & Yi, Chang-Xian, 2007. "Chaos in a nonlinear damped Mathieu system, in a nano resonator system and in its fractional order systems," Chaos, Solitons & Fractals, Elsevier, vol. 32(1), pages 42-61.
    2. Tam, Lap Mou & Si Tou, Wai Meng, 2008. "Parametric study of the fractional-order Chen–Lee system," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 817-826.
    3. Rahaman, Mostafijur & Mondal, Sankar Prasad & Alam, Shariful & Metwally, Ahmed Sayed M. & Salahshour, Soheil & Salimi, Mehdi & Ahmadian, Ali, 2022. "Manifestation of interval uncertainties for fractional differential equations under conformable derivative," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    4. Zheng, Yongai & Ji, Zhilin, 2016. "Predictive control of fractional-order chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 87(C), pages 307-313.
    5. Marina Plekhanova & Guzel Baybulatova, 2020. "Multi-Term Fractional Degenerate Evolution Equations and Optimal Control Problems," Mathematics, MDPI, vol. 8(4), pages 1-9, April.
    6. Das, Saptarshi & Pan, Indranil & Das, Shantanu, 2016. "Effect of random parameter switching on commensurate fractional order chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 157-173.
    7. Faïçal Ndaïrou & Delfim F. M. Torres, 2023. "Pontryagin Maximum Principle for Incommensurate Fractional-Orders Optimal Control Problems," Mathematics, MDPI, vol. 11(19), pages 1-12, October.
    8. Shiri, Babak & Baleanu, Dumitru, 2023. "All linear fractional derivatives with power functions’ convolution kernel and interpolation properties," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    9. Petráš, Ivo, 2008. "A note on the fractional-order Chua’s system," Chaos, Solitons & Fractals, Elsevier, vol. 38(1), pages 140-147.
    10. Li, Zengshan & Chen, Diyi & Ma, Mengmeng & Zhang, Xinguang & Wu, Yonghong, 2017. "Feigenbaum's constants in reverse bifurcation of fractional-order Rössler system," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 116-123.
    11. Lin, Tsung-Chih & Lee, Tun-Yuan & Balas, Valentina E., 2011. "Adaptive fuzzy sliding mode control for synchronization of uncertain fractional order chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 44(10), pages 791-801.
    12. Junmei Guo & Chunrui Ma & Xinheng Wang & Fangfang Zhang & Michaël Antonie van Wyk & Lei Kou, 2021. "A New Synchronization Method for Time-Delay Fractional Complex Chaotic System and Its Application," Mathematics, MDPI, vol. 9(24), pages 1-20, December.
    13. Chen, Wei-Ching, 2008. "Nonlinear dynamics and chaos in a fractional-order financial system," Chaos, Solitons & Fractals, Elsevier, vol. 36(5), pages 1305-1314.
    14. Zhu, Hao & Zhou, Shangbo & Zhang, Jun, 2009. "Chaos and synchronization of the fractional-order Chua’s system," Chaos, Solitons & Fractals, Elsevier, vol. 39(4), pages 1595-1603.
    15. Zaheer Masood & Muhammad Asif Zahoor Raja & Naveed Ishtiaq Chaudhary & Khalid Mehmood Cheema & Ahmad H. Milyani, 2021. "Fractional Dynamics of Stuxnet Virus Propagation in Industrial Control Systems," Mathematics, MDPI, vol. 9(17), pages 1-27, September.
    16. Aneesh S. Deogan & Roeland Dilz & Diego Caratelli, 2024. "On the Application of Fractional Derivative Operator Theory to the Electromagnetic Modeling of Frequency Dispersive Media," Mathematics, MDPI, vol. 12(7), pages 1-17, March.
    17. Asiain, Erick & Garrido, Rubén, 2021. "Anti-Chaos control of a servo system using nonlinear model reference adaptive control," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    18. Barba-Franco, J.J. & Gallegos, A. & Jaimes-Reátegui, R. & Pisarchik, A.N., 2022. "Dynamics of a ring of three fractional-order Duffing oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    19. Oscar Martínez-Fuentes & Fidel Meléndez-Vázquez & Guillermo Fernández-Anaya & José Francisco Gómez-Aguilar, 2021. "Analysis of Fractional-Order Nonlinear Dynamic Systems with General Analytic Kernels: Lyapunov Stability and Inequalities," Mathematics, MDPI, vol. 9(17), pages 1-29, August.
    20. Duarte Valério & Manuel D. Ortigueira, 2023. "Variable-Order Fractional Scale Calculus," Mathematics, MDPI, vol. 11(21), pages 1-13, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:6:p:893-:d:366183. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.