IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v225y2024icp857-888.html
   My bibliography  Save this article

A chaos study of fractal–fractional predator–prey model of mathematical ecology

Author

Listed:
  • Kumar, Ajay
  • Kumar, Sunil
  • Momani, Shaher
  • Hadid, Samir

Abstract

This paper presents a mathematical model to examine the effects of the coexistence of predators on single prey. Based on fractal–fractional Atangana–Baleanu (AB) and Caputo operators, we present a newly developed system of differential equations for the predator–prey system. Our study utilized the fixed point postulate to investigate the uniqueness and existence of solutions. Additionally, Ulam’s type of stability of the proposed model is established with the help of nonlinear functional analysis. Further bifurcation diagrams, as well as phase portraits, have been used to study the proposed system numerically and to analyze its behavior. The generalized non-linear system with fractal–fractional Atangana–Baleanu (AB) and Caputo non-integer operators have been solved numerically via the Toufik–Atangana (TA) scheme respectively. We have demonstrated the applicability and effectiveness of these methods by analyzing numerical simulations for the fractal–fractional predator–prey ecological model and the numerical simulation has been calculated by MATLAB programming.

Suggested Citation

  • Kumar, Ajay & Kumar, Sunil & Momani, Shaher & Hadid, Samir, 2024. "A chaos study of fractal–fractional predator–prey model of mathematical ecology," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 225(C), pages 857-888.
  • Handle: RePEc:eee:matcom:v:225:y:2024:i:c:p:857-888
    DOI: 10.1016/j.matcom.2023.09.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037847542300410X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2023.09.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:225:y:2024:i:c:p:857-888. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.