IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v539y2020ics0378437119316541.html
   My bibliography  Save this article

Chaos and multiple attractors in a fractal–fractional Shinriki’s oscillator model

Author

Listed:
  • Gómez-Aguilar, J.F.

Abstract

In this paper, we obtain novel chaotic behaviors using differential and integral operators with power-law, exponential-decay and Mittag-Leffler law for the Shinriki’s oscillator model. We studied the uniqueness and existence of the solutions employing the fixed point postulate. Also, we consider fractal–fractional operators to capture self-similarities for this chaotic attractor. These novel operators predict chaotic behaviors involving the fractal derivative in convolution with power-law, exponential decay law and the Mittag-Leffler function. The generalized model with power-law and Mittag-Leffler kernel was solved numerically via the Adams–Bashforth–Moulton and Adams–Moulton scheme, respectively. For another cases, the numerical schemes are based on the fundamental theorem of fractional calculus and the Lagrange polynomial interpolation. Numerical simulations for the symmetric and asymmetric cases are obtained to show the applicability and computational efficiency of these methods.

Suggested Citation

  • Gómez-Aguilar, J.F., 2020. "Chaos and multiple attractors in a fractal–fractional Shinriki’s oscillator model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
  • Handle: RePEc:eee:phsmap:v:539:y:2020:i:c:s0378437119316541
    DOI: 10.1016/j.physa.2019.122918
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119316541
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.122918?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Singh, Jagdev & Kumar, Devendra & Baleanu, Dumitru & Rathore, Sushila, 2018. "An efficient numerical algorithm for the fractional Drinfeld–Sokolov–Wilson equation," Applied Mathematics and Computation, Elsevier, vol. 335(C), pages 12-24.
    2. Fernandez, Arran & Özarslan, Mehmet Ali & Baleanu, Dumitru, 2019. "On fractional calculus with general analytic kernels," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 248-265.
    3. Kanno, Ryutaro, 1998. "Representation of random walk in fractal space-time," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 248(1), pages 165-175.
    4. Goswami, Amit & Singh, Jagdev & Kumar, Devendra & Sushila,, 2019. "An efficient analytical approach for fractional equal width equations describing hydro-magnetic waves in cold plasma," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 563-575.
    5. Qureshi, Sania & Atangana, Abdon, 2019. "Mathematical analysis of dengue fever outbreak by novel fractional operators with field data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ramadoss, Janarthanan & Kengne, Jacques & Kengnou Telem, Adélaïde Nicole & Rajagopal, Karthikeyan, 2022. "Broken symmetry and dynamics of a memristive diodes bridge-based Shinriki oscillator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
    2. Dong, Youheng & Zhao, Geng, 2021. "A spatiotemporal chaotic system based on pseudo-random coupled map lattices and elementary cellular automata," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sadat, R. & Saleh, R. & Kassem, M. & Mousa, Mohamed M., 2020. "Investigation of Lie symmetry and new solutions for highly dimensional non-elastic and elastic interactions between internal waves," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    2. Bhatter, Sanjay & Mathur, Amit & Kumar, Devendra & Singh, Jagdev, 2020. "A new analysis of fractional Drinfeld–Sokolov–Wilson model with exponential memory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    3. Ghanbari, Behzad & Günerhan, Hatıra & Srivastava, H.M., 2020. "An application of the Atangana-Baleanu fractional derivative in mathematical biology: A three-species predator-prey model," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    4. Ma, Junjie & Liu, Huilan, 2020. "A sparse fractional Jacobi–Galerkin–Levin quadrature rule for highly oscillatory integrals," Applied Mathematics and Computation, Elsevier, vol. 367(C).
    5. Kritika, & Agarwal, Ritu & Purohit, Sunil Dutt, 2020. "Mathematical model for anomalous subdiffusion using comformable operator," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    6. Akgül, Ali & Partohaghighi, Mohammad, 2022. "New fractional modelling and control analysis of the circumscribed self-excited spherical strange attractor," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    7. Prakash, Amit & Kaur, Hardish, 2021. "Analysis and numerical simulation of fractional Biswas–Milovic model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 298-315.
    8. Singh, C.S. & Singh, Harendra & Singh, Somveer & Kumar, Devendra, 2019. "An efficient computational method for solving system of nonlinear generalized Abel integral equations arising in astrophysics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1440-1448.
    9. Solís-Pérez, J.E. & Gómez-Aguilar, J.F. & Atangana, A., 2018. "Novel numerical method for solving variable-order fractional differential equations with power, exponential and Mittag-Leffler laws," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 175-185.
    10. Sunil Kumar & Ali Ahmadian & Ranbir Kumar & Devendra Kumar & Jagdev Singh & Dumitru Baleanu & Mehdi Salimi, 2020. "An Efficient Numerical Method for Fractional SIR Epidemic Model of Infectious Disease by Using Bernstein Wavelets," Mathematics, MDPI, vol. 8(4), pages 1-22, April.
    11. Abro, Kashif Ali & Khan, Ilyas & Nisar, Kottakkaran Sooppy, 2019. "Novel technique of Atangana and Baleanu for heat dissipation in transmission line of electrical circuit," Chaos, Solitons & Fractals, Elsevier, vol. 129(C), pages 40-45.
    12. Rahman, Mati ur & Arfan, Muhammad & Shah, Kamal & Gómez-Aguilar, J.F., 2020. "Investigating a nonlinear dynamical model of COVID-19 disease under fuzzy caputo, random and ABC fractional order derivative," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    13. Qureshi, Sania & Yusuf, Abdullahi, 2019. "Mathematical modeling for the impacts of deforestation on wildlife species using Caputo differential operator," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 32-40.
    14. Chaudhary, Naveed Ishtiaq & Raja, Muhammad Asif Zahoor & Khan, Zeshan Aslam & Mehmood, Ammara & Shah, Syed Muslim, 2022. "Design of fractional hierarchical gradient descent algorithm for parameter estimation of nonlinear control autoregressive systems," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    15. Mamta Kapoor & Nehad Ali Shah & Salman Saleem & Wajaree Weera, 2022. "An Analytical Approach for Fractional Hyperbolic Telegraph Equation Using Shehu Transform in One, Two and Three Dimensions," Mathematics, MDPI, vol. 10(12), pages 1-26, June.
    16. Jing Chang & Jin Zhang & Ming Cai, 2021. "Series Solutions of High-Dimensional Fractional Differential Equations," Mathematics, MDPI, vol. 9(17), pages 1-21, August.
    17. Zeid, Samaneh Soradi, 2019. "Approximation methods for solving fractional equations," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 171-193.
    18. Singh, Jagdev, 2020. "Analysis of fractional blood alcohol model with composite fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    19. Li, Zhongfei & Liu, Zhuang & Khan, Muhammad Altaf, 2020. "Fractional investigation of bank data with fractal-fractional Caputo derivative," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    20. Sekerci, Yadigar & Ozarslan, Ramazan, 2020. "Respiration Effect on Plankton–Oxygen Dynamics in view of non-singular time fractional derivatives," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:539:y:2020:i:c:s0378437119316541. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.