IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i18p3859-d1236455.html
   My bibliography  Save this article

Inequalities for Riemann–Liouville-Type Fractional Derivatives of Convex Lyapunov Functions and Applications to Stability Theory

Author

Listed:
  • Ravi P. Agarwal

    (Department of Mathematics, Texas A&M University-Kingsville, Kingsville, TX 78363, USA)

  • Snezhana Hristova

    (Faculty of Mathematics and Informatics, Plovdiv University “P. Hilendarski”, 4000 Plovdiv, Bulgaria)

  • Donal O’Regan

    (School of Mathematical and Statistical Sciences, University of Galway, H91 TK33 Galway, Ireland)

Abstract

In recent years, various qualitative investigations of the properties of differential equations with different types of generalizations of Riemann–Liouville fractional derivatives were studied and stability properties were investigated, usually using Lyapunov functions. In the application of Lyapunov functions, we need appropriate inequalities for the fractional derivatives of these functions. In this paper, we consider several Riemann–Liouville types of fractional derivatives and prove inequalities for derivatives of convex Lyapunov functions. In particular, we consider the classical Riemann–Liouville fractional derivative, the Riemann–Liouville fractional derivative with respect to a function, the tempered Riemann–Liouville fractional derivative, and the tempered Riemann–Liouville fractional derivative with respect to a function. We discuss their relations and their basic properties, as well as the connection between them. We prove inequalities for Lyapunov functions from a special class, and this special class of functions is similar to the class of convex functions of many variables. Note that, in the literature, the most common Lyapunov functions are the quadratic ones and the absolute value ones, which are included in the studied class. As a result, special cases of our inequalities include Lyapunov functions given by absolute values, quadratic ones, and exponential ones with the above given four types of fractional derivatives. These results are useful in studying types of stability of the solutions of differential equations with the above-mentioned types of fractional derivatives. To illustrate the application of our inequalities, we define Mittag–Leffler stability in time on an interval excluding the initial time point. Several stability criteria are obtained.

Suggested Citation

  • Ravi P. Agarwal & Snezhana Hristova & Donal O’Regan, 2023. "Inequalities for Riemann–Liouville-Type Fractional Derivatives of Convex Lyapunov Functions and Applications to Stability Theory," Mathematics, MDPI, vol. 11(18), pages 1-23, September.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:18:p:3859-:d:1236455
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/18/3859/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/18/3859/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yuri Luchko, 2022. "Fractional Differential Equations with the General Fractional Derivatives of Arbitrary Order in the Riemann–Liouville Sense," Mathematics, MDPI, vol. 10(6), pages 1-24, March.
    2. Chuan-Yun Gu & Feng-Xia Zheng & Babak Shiri, 2021. "Mittag-Leffler Stability Analysis Of Tempered Fractional Neural Networks With Short Memory And Variable-Order," FRACTALS (fractals), World Scientific Publishing Co. Pte. Ltd., vol. 29(08), pages 1-12, December.
    3. Peter Carr & Helyette Geman, 2002. "The Fine Structure of Asset Returns: An Empirical Investigation," The Journal of Business, University of Chicago Press, vol. 75(2), pages 305-332, April.
    4. Ravi Agarwal & Snezhana Hristova & Donal O’Regan, 2021. "Stability Concepts of Riemann-Liouville Fractional-Order Delay Nonlinear Systems," Mathematics, MDPI, vol. 9(4), pages 1-16, February.
    5. Watcharin Chartbupapan & Ovidiu Bagdasar & Kanit Mukdasai, 2020. "A Novel Delay-Dependent Asymptotic Stability Conditions for Differential and Riemann-Liouville Fractional Differential Neutral Systems with Constant Delays and Nonlinear Perturbation," Mathematics, MDPI, vol. 8(1), pages 1-10, January.
    6. Erdal Korkmaz & Abdulhamit Ozdemir & Kenan Yildirim & A. Hussain, 2022. "Asymptotical Stability of Riemann-Liouville Nonlinear Fractional Neutral Neural Networks with Time-Varying Delays," Journal of Mathematics, Hindawi, vol. 2022, pages 1-13, September.
    7. Gao, Xin & Yu, Juebang, 2005. "Chaos in the fractional order periodically forced complex Duffing’s oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 24(4), pages 1097-1104.
    8. Shuo Zhang & Yongguang Yu & Wei Hu, 2014. "Robust Stability Analysis of Fractional-Order Hopfield Neural Networks with Parameter Uncertainties," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-14, April.
    9. Jingwei Deng & Weiyuan Ma & Kaiying Deng & Yingxing Li, 2020. "Tempered Mittag–Leffler Stability of Tempered Fractional Dynamical Systems," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-9, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zitane, Hanaa & Torres, Delfim F.M., 2023. "Finite time stability of tempered fractional systems with time delays," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    2. Mancini, Cecilia, 2011. "The speed of convergence of the Threshold estimator of integrated variance," Stochastic Processes and their Applications, Elsevier, vol. 121(4), pages 845-855, April.
    3. Lord, Roger & Fang, Fang & Bervoets, Frank & Oosterlee, Kees, 2007. "A fast and accurate FFT-based method for pricing early-exercise options under Lévy processes," MPRA Paper 1952, University Library of Munich, Germany.
    4. Deniz Erdemlioglu & Nikola Gradojevic, 2021. "Heterogeneous investment horizons, risk regimes, and realized jumps," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(1), pages 617-643, January.
    5. Buchmann, Boris & Kaehler, Benjamin & Maller, Ross & Szimayer, Alexander, 2017. "Multivariate subordination using generalised Gamma convolutions with applications to Variance Gamma processes and option pricing," Stochastic Processes and their Applications, Elsevier, vol. 127(7), pages 2208-2242.
    6. Young Shin Kim, 2018. "First Passage Time for Tempered Stable Process and Its Application to Perpetual American Option and Barrier Option Pricing," Papers 1801.09362, arXiv.org.
    7. Ge, Zheng-Ming & Yi, Chang-Xian, 2007. "Chaos in a nonlinear damped Mathieu system, in a nano resonator system and in its fractional order systems," Chaos, Solitons & Fractals, Elsevier, vol. 32(1), pages 42-61.
    8. Constantinos Kardaras, 2009. "No‐Free‐Lunch Equivalences For Exponential Lévy Models Under Convex Constraints On Investment," Mathematical Finance, Wiley Blackwell, vol. 19(2), pages 161-187, April.
    9. Dilip B. Madan & Wim Schoutens & King Wang, 2017. "Measuring And Monitoring The Efficiency Of Markets," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(08), pages 1-32, December.
    10. Todorov, Viktor & Zhang, Yang, 2023. "Bias reduction in spot volatility estimation from options," Journal of Econometrics, Elsevier, vol. 234(1), pages 53-81.
    11. Lynn Boen & Florence Guillaume, 2020. "Towards a $$\Delta $$Δ-Gamma Sato multivariate model," Review of Derivatives Research, Springer, vol. 23(1), pages 1-39, April.
    12. Jose Cruz & Daniel Sevcovic, 2020. "On solutions of a partial integro-differential equation in Bessel potential spaces with applications in option pricing models," Papers 2003.03851, arXiv.org.
    13. Ron Tat Lung Chan, 2016. "Adaptive Radial Basis Function Methods for Pricing Options Under Jump-Diffusion Models," Computational Economics, Springer;Society for Computational Economics, vol. 47(4), pages 623-643, April.
    14. Yongxin Yang & Yu Zheng & Timothy M. Hospedales, 2016. "Gated Neural Networks for Option Pricing: Rationality by Design," Papers 1609.07472, arXiv.org, revised Mar 2020.
    15. Fang, Fang & Oosterlee, Kees, 2008. "A Novel Pricing Method For European Options Based On Fourier-Cosine Series Expansions," MPRA Paper 9319, University Library of Munich, Germany.
    16. Yuta Koike, 2014. "An estimator for the cumulative co-volatility of asynchronously observed semimartingales with jumps," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(2), pages 460-481, June.
    17. Fu, Qi & So, Jacky Yuk-Chow & Li, Xiaotong, 2024. "Stable paretian distribution, return generating processes and habit formation—The implication for equity premium puzzle," The North American Journal of Economics and Finance, Elsevier, vol. 70(C).
    18. Weron, Rafal & Misiorek, Adam, 2007. "Heavy tails and electricity prices: Do time series models with non-Gaussian noise forecast better than their Gaussian counterparts?," MPRA Paper 2292, University Library of Munich, Germany, revised Oct 2007.
    19. Geman, Helyette, 2002. "Pure jump Levy processes for asset price modelling," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1297-1316, July.
    20. Álvaro Cartea & Thilo Meyer-Brandis, 2010. "How Duration Between Trades of Underlying Securities Affects Option Prices," Review of Finance, European Finance Association, vol. 14(4), pages 749-785.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:18:p:3859-:d:1236455. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.