IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i22p4382-d979057.html
   My bibliography  Save this article

Modeling and Stability Analysis of Within-Host IAV/SARS-CoV-2 Coinfection with Antibody Immunity

Author

Listed:
  • Ahmed M. Elaiw

    (Department of Mathematics, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia)

  • Raghad S. Alsulami

    (Department of Mathematics, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia)

  • Aatef D. Hobiny

    (Department of Mathematics, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia)

Abstract

Studies have reported several cases with respiratory viruses coinfection in hospitalized patients. Influenza A virus (IAV) mimics the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) with respect to seasonal occurrence, transmission routes, clinical manifestations and related immune responses. The present paper aimed to develop and investigate a mathematical model to study the dynamics of IAV/SARS-CoV-2 coinfection within the host. The influence of SARS-CoV-2-specific and IAV-specific antibody immunities is incorporated. The model simulates the interaction between seven compartments, uninfected epithelial cells, SARS-CoV-2-infected cells, IAV-infected cells, free SARS-CoV-2 particles, free IAV particles, SARS-CoV-2-specific antibodies and IAV-specific antibodies. The regrowth and death of the uninfected epithelial cells are considered. We study the basic qualitative properties of the model, calculate all equilibria and investigate the global stability of all equilibria. The global stability of equilibria is established using the Lyapunov method. We perform numerical simulations and demonstrate that they are in good agreement with the theoretical results. The importance of including the antibody immunity into the coinfection dynamics model is discussed. We have found that without modeling the antibody immunity, the case of IAV and SARS-CoV-2 coexistence is not observed. Finally, we discuss the influence of IAV infection on the dynamics of SARS-CoV-2 single-infection and vice versa.

Suggested Citation

  • Ahmed M. Elaiw & Raghad S. Alsulami & Aatef D. Hobiny, 2022. "Modeling and Stability Analysis of Within-Host IAV/SARS-CoV-2 Coinfection with Antibody Immunity," Mathematics, MDPI, vol. 10(22), pages 1-36, November.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:22:p:4382-:d:979057
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/22/4382/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/22/4382/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rehman, Attiq ul & Singh, Ram & Agarwal, Praveen, 2021. "Modeling, analysis and prediction of new variants of covid-19 and dengue co-infection on complex network," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    2. Omame, Andrew & Abbas, Mujahid & Abdel-Aty, Abdel-Haleem, 2022. "Assessing the impact of SARS-CoV-2 infection on the dynamics of dengue and HIV via fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmed M. Elaiw & Abdulsalam S. Shflot & Aatef D. Hobiny & Shaban A. Aly, 2023. "Global Dynamics of an HTLV-I and SARS-CoV-2 Co-Infection Model with Diffusion," Mathematics, MDPI, vol. 11(3), pages 1-33, January.
    2. Ahmed M. Elaiw & Aeshah A. Raezah & Matuka A. Alshaikh, 2023. "Global Dynamics of Viral Infection with Two Distinct Populations of Antibodies," Mathematics, MDPI, vol. 11(14), pages 1-26, July.
    3. Ahmed M. Elaiw & Abdulsalam S. Shflot & Aatef D. Hobiny, 2022. "Global Stability of Delayed SARS-CoV-2 and HTLV-I Coinfection Models within a Host," Mathematics, MDPI, vol. 10(24), pages 1-35, December.
    4. Ahmed. M. Elaiw & Abdullah J. Alsaedi & Aatef. D. Hobiny & Shaban. A. Aly, 2022. "Global Properties of a Diffusive SARS-CoV-2 Infection Model with Antibody and Cytotoxic T-Lymphocyte Immune Responses," Mathematics, MDPI, vol. 11(1), pages 1-32, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmed M. Elaiw & Abdulsalam S. Shflot & Aatef D. Hobiny & Shaban A. Aly, 2023. "Global Dynamics of an HTLV-I and SARS-CoV-2 Co-Infection Model with Diffusion," Mathematics, MDPI, vol. 11(3), pages 1-33, January.
    2. Ahmed M. Elaiw & Abdulsalam S. Shflot & Aatef D. Hobiny, 2022. "Global Stability of Delayed SARS-CoV-2 and HTLV-I Coinfection Models within a Host," Mathematics, MDPI, vol. 10(24), pages 1-35, December.
    3. Omame, Andrew & Abbas, Mujahid, 2023. "Modeling SARS-CoV-2 and HBV co-dynamics with optimal control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
    4. Rehman, Attiq ul & Singh, Ram & Singh, Jagdev, 2022. "Mathematical analysis of multi-compartmental malaria transmission model with reinfection," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    5. Li, WenYao & Xue, Xiaoyu & Pan, Liming & Lin, Tao & Wang, Wei, 2022. "Competing spreading dynamics in simplicial complex," Applied Mathematics and Computation, Elsevier, vol. 412(C).
    6. Nie, Yanyi & Zhong, Xiaoni & Lin, Tao & Wang, Wei, 2022. "Homophily in competing behavior spreading among the heterogeneous population with higher-order interactions," Applied Mathematics and Computation, Elsevier, vol. 432(C).
    7. Omame, A. & Abbas, M. & Onyenegecha, C.P., 2021. "A fractional-order model for COVID-19 and tuberculosis co-infection using Atangana–Baleanu derivative," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    8. Du, Yuxian & Lin, Xi & Pan, Ye & Chen, Zhaoxin & Xia, Huan & Luo, Qian, 2023. "Identifying influential airports in airline network based on failure risk factors with TOPSIS," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    9. Zehba Raizah & Rahat Zarin, 2023. "Advancing COVID-19 Understanding: Simulating Omicron Variant Spread Using Fractional-Order Models and Haar Wavelet Collocation," Mathematics, MDPI, vol. 11(8), pages 1-30, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:22:p:4382-:d:979057. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.