IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v157y2022ics0960077922000935.html
   My bibliography  Save this article

Synchronization between two linearly coupled reservoir computers

Author

Listed:
  • Hu, Wancheng
  • Zhang, Yibin
  • Ma, Rencai
  • Dai, Qionglin
  • Yang, Junzhong

Abstract

Reservoir computing, using a model-free algorithm, has drawn considerable attention in the past few years. In this work, we use a reservoir computer to reconstruct the attractor of its learned chaotic system. We present a form of interaction between two reservoir computers inspired by the diffusion coupling of oscillators. By mixing the readout of two reservoir computers with an appropriate coupling strength, we present the complete synchronization of reservoir computers. Numerical experiments are performed to verify the theory.

Suggested Citation

  • Hu, Wancheng & Zhang, Yibin & Ma, Rencai & Dai, Qionglin & Yang, Junzhong, 2022. "Synchronization between two linearly coupled reservoir computers," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
  • Handle: RePEc:eee:chsofr:v:157:y:2022:i:c:s0960077922000935
    DOI: 10.1016/j.chaos.2022.111882
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922000935
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.111882?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. L. Appeltant & M.C. Soriano & G. Van der Sande & J. Danckaert & S. Massar & J. Dambre & B. Schrauwen & C.R. Mirasso & I. Fischer, 2011. "Information processing using a single dynamical node as complex system," Nature Communications, Nature, vol. 2(1), pages 1-6, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Xiaolu & Weng, Tongfeng & Li, Chunzi & Yang, Huijie, 2022. "Equivalence of machine learning models in modeling chaos," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    2. Huang, Changwei & Luo, Yijun & Han, Wenchen, 2023. "Cooperation and synchronization in evolutionary opinion changing rate games," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    3. Zhou, Ping & Ma, Jun & Xu, Ying, 2023. "Phase synchronization between neurons under nonlinear coupling via hybrid synapse," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    4. Weng, Tongfeng & Chen, Xiaolu & Ren, Zhuoming & Yang, Huijie & Zhang, Jie & Small, Michael, 2023. "Synchronization of multiple mobile reservoir computing oscillators in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    5. Ma, Rencai & Dai, Qionglin & Li, Haihong & Yang, Junzhong, 2023. "Dynamics reconstruction in the presence of bistability by using reservoir computer," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhiwei Chen & Wenjie Li & Zhen Fan & Shuai Dong & Yihong Chen & Minghui Qin & Min Zeng & Xubing Lu & Guofu Zhou & Xingsen Gao & Jun-Ming Liu, 2023. "All-ferroelectric implementation of reservoir computing," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Xiangpeng Liang & Yanan Zhong & Jianshi Tang & Zhengwu Liu & Peng Yao & Keyang Sun & Qingtian Zhang & Bin Gao & Hadi Heidari & He Qian & Huaqiang Wu, 2022. "Rotating neurons for all-analog implementation of cyclic reservoir computing," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Suresh, R. & Senthilkumar, D.V. & Lakshmanan, M. & Kurths, J., 2016. "Emergence of a common generalized synchronization manifold in network motifs of structurally different time-delay systems," Chaos, Solitons & Fractals, Elsevier, vol. 93(C), pages 235-245.
    4. Zhiyuan Li & Zhongshao Li & Wei Tang & Jiaping Yao & Zhipeng Dou & Junjie Gong & Yongfei Li & Beining Zhang & Yunxiao Dong & Jian Xia & Lin Sun & Peng Jiang & Xun Cao & Rui Yang & Xiangshui Miao & Ron, 2024. "Crossmodal sensory neurons based on high-performance flexible memristors for human-machine in-sensor computing system," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Zhongfang Zhang & Xiaolong Zhao & Xumeng Zhang & Xiaohu Hou & Xiaolan Ma & Shuangzhu Tang & Ying Zhang & Guangwei Xu & Qi Liu & Shibing Long, 2022. "In-sensor reservoir computing system for latent fingerprint recognition with deep ultraviolet photo-synapses and memristor array," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Laura E. Suárez & Agoston Mihalik & Filip Milisav & Kenji Marshall & Mingze Li & Petra E. Vértes & Guillaume Lajoie & Bratislav Misic, 2024. "Connectome-based reservoir computing with the conn2res toolbox," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    7. Lukas Körber & Christopher Heins & Tobias Hula & Joo-Von Kim & Sonia Thlang & Helmut Schultheiss & Jürgen Fassbender & Katrin Schultheiss, 2023. "Pattern recognition in reciprocal space with a magnon-scattering reservoir," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    8. Wang, Tao & Zhou, Hanxu & Fang, Qing & Han, Yanan & Guo, Xingxing & Zhang, Yahui & Qian, Chao & Chen, Hongsheng & Barland, Stéphane & Xiang, Shuiying & Lippi, Gian Luca, 2024. "Reservoir computing-based advance warning of extreme events," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    9. Rohit Abraham John & Yiğit Demirağ & Yevhen Shynkarenko & Yuliia Berezovska & Natacha Ohannessian & Melika Payvand & Peng Zeng & Maryna I. Bodnarchuk & Frank Krumeich & Gökhan Kara & Ivan Shorubalko &, 2022. "Reconfigurable halide perovskite nanocrystal memristors for neuromorphic computing," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    10. Lina Jaurigue & Kathy Lüdge, 2022. "Connecting reservoir computing with statistical forecasting and deep neural networks," Nature Communications, Nature, vol. 13(1), pages 1-3, December.
    11. Minati, Ludovico & Mancinelli, Mattia & Frasca, Mattia & Bettotti, Paolo & Pavesi, Lorenzo, 2021. "An analog electronic emulator of non-linear dynamics in optical microring resonators," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    12. Zheng-Meng Zhai & Mohammadamin Moradi & Ling-Wei Kong & Bryan Glaz & Mulugeta Haile & Ying-Cheng Lai, 2023. "Model-free tracking control of complex dynamical trajectories with machine learning," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    13. Jangsaeng Kim & Eun Chan Park & Wonjun Shin & Ryun-Han Koo & Chang-Hyeon Han & He Young Kang & Tae Gyu Yang & Youngin Goh & Kilho Lee & Daewon Ha & Suraj S. Cheema & Jae Kyeong Jeong & Daewoong Kwon, 2024. "Analog reservoir computing via ferroelectric mixed phase boundary transistors," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    14. Pengzhan Li & Mingzhen Zhang & Qingli Zhou & Qinghua Zhang & Donggang Xie & Ge Li & Zhuohui Liu & Zheng Wang & Erjia Guo & Meng He & Can Wang & Lin Gu & Guozhen Yang & Kuijuan Jin & Chen Ge, 2024. "Reconfigurable optoelectronic transistors for multimodal recognition," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    15. Minati, Ludovico & Li, Chao & Bartels, Jim & Chakraborty, Parthojit & Li, Zixuan & Yoshimura, Natsue & Frasca, Mattia & Ito, Hiroyuki, 2023. "Accelerometer time series augmentation through externally driving a non-linear dynamical system," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    16. Ling-Wei Kong & Gene A. Brewer & Ying-Cheng Lai, 2024. "Reservoir-computing based associative memory and itinerancy for complex dynamical attractors," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    17. Changsong Gao & Di Liu & Chenhui Xu & Weidong Xie & Xianghong Zhang & Junhua Bai & Zhixian Lin & Cheng Zhang & Yuanyuan Hu & Tailiang Guo & Huipeng Chen, 2024. "Toward grouped-reservoir computing: organic neuromorphic vertical transistor with distributed reservoir states for efficient recognition and prediction," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    18. Xiangzun Wang & Frank Cichos, 2024. "Harnessing synthetic active particles for physical reservoir computing," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    19. Carroll, Thomas L., 2022. "Creating new chaotic signals with reservoir computers," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    20. Min Yan & Can Huang & Peter Bienstman & Peter Tino & Wei Lin & Jie Sun, 2024. "Emerging opportunities and challenges for the future of reservoir computing," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:157:y:2022:i:c:s0960077922000935. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.