Equivalence of machine learning models in modeling chaos
Author
Abstract
Suggested Citation
DOI: 10.1016/j.chaos.2022.112831
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Chen, Xiaolu & Weng, Tongfeng & Gu, Changgui & Yang, Huijie, 2019. "Synchronizing hyperchaotic subsystems with a single variable: A reservoir computing approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
- Sangiorgio, Matteo & Dercole, Fabio, 2020. "Robustness of LSTM neural networks for multi-step forecasting of chaotic time series," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
- Uribarri, Gonzalo & Mindlin, Gabriel B., 2022. "Dynamical time series embeddings in recurrent neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
- Fischer, Thomas & Krauss, Christopher, 2018. "Deep learning with long short-term memory networks for financial market predictions," European Journal of Operational Research, Elsevier, vol. 270(2), pages 654-669.
- Chen, Xiaolu & Weng, Tongfeng & Li, Chunzi & Yang, Huijie, 2022. "Synchronization of reservoir computing models via a nonlinear controller," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
- Hu, Wancheng & Zhang, Yibin & Ma, Rencai & Dai, Qionglin & Yang, Junzhong, 2022. "Synchronization between two linearly coupled reservoir computers," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
- Weng, Tongfeng & Song, Jia & Yang, Huijie & Gu, Changgui & Zhang, Jie & Small, Michael, 2020. "Synchronization of reservoir computers with applications to communications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 544(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Chen, Xiaolu & Weng, Tongfeng & Yang, Huijie, 2023. "Synchronization of spatiotemporal chaos and reservoir computing via scalar signals," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
- Weng, Tongfeng & Chen, Xiaolu & Ren, Zhuoming & Yang, Huijie & Zhang, Jie & Small, Michael, 2023. "Synchronization of multiple mobile reservoir computing oscillators in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
- Naudé, Wim, 2023. "Artificial Intelligence and the Economics of Decision-Making," IZA Discussion Papers 16000, Institute of Labor Economics (IZA).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chen, Xiaolu & Weng, Tongfeng & Li, Chunzi & Yang, Huijie, 2022. "Synchronization of reservoir computing models via a nonlinear controller," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
- Chen, Xiaolu & Weng, Tongfeng & Yang, Huijie, 2023. "Synchronization of spatiotemporal chaos and reservoir computing via scalar signals," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
- Valle, João & Bruno, Odemir M., 2024. "Dynamics and patterns of the least significant digits of the infinite-arithmetic precision logistic map orbits," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
- Wei Dai & Yuan An & Wen Long, 2021. "Price change prediction of ultra high frequency financial data based on temporal convolutional network," Papers 2107.00261, arXiv.org.
- Shoreh, A.A.-H. & Kuznetsov, N.V. & Mokaev, T.N., 2022. "New adaptive synchronization algorithm for a general class of complex hyperchaotic systems with unknown parameters and its application to secure communication," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
- Kamaladdin Fataliyev & Aneesh Chivukula & Mukesh Prasad & Wei Liu, 2021. "Stock Market Analysis with Text Data: A Review," Papers 2106.12985, arXiv.org, revised Jul 2021.
- Zhou, Ling & You, Zhenzhen & Tang, Yun, 2021. "A new chaotic system with nested coexisting multiple attractors and riddled basins," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
- Sina Montazeri & Akram Mirzaeinia & Haseebullah Jumakhan & Amir Mirzaeinia, 2024. "CNN-DRL for Scalable Actions in Finance," Papers 2401.06179, arXiv.org.
- Rad, Hossein & Low, Rand Kwong Yew & Miffre, Joëlle & Faff, Robert, 2023.
"The commodity risk premium and neural networks,"
Journal of Empirical Finance, Elsevier, vol. 74(C).
- Joelle Miffre & Hossein Rad & Rand Kwong Yew Low & Robert Faff, 2023. "The commodity risk premium and neural networks," Post-Print hal-04322519, HAL.
- Noura Metawa & Mohamemd I. Alghamdi & Ibrahim M. El-Hasnony & Mohamed Elhoseny, 2021. "Return Rate Prediction in Blockchain Financial Products Using Deep Learning," Sustainability, MDPI, vol. 13(21), pages 1-16, October.
- Kentaro Imajo & Kentaro Minami & Katsuya Ito & Kei Nakagawa, 2020. "Deep Portfolio Optimization via Distributional Prediction of Residual Factors," Papers 2012.07245, arXiv.org.
- James Wallbridge, 2020. "Transformers for Limit Order Books," Papers 2003.00130, arXiv.org.
- Lampartová, Alžběta & Lampart, Marek, 2024. "Exploring diverse trajectory patterns in nonlinear dynamic systems," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
- Burka, Dávid & Puppe, Clemens & Szepesváry, László & Tasnádi, Attila, 2022.
"Voting: A machine learning approach,"
European Journal of Operational Research, Elsevier, vol. 299(3), pages 1003-1017.
- Burka, Dávid & Puppe, Clemens & Szepesváry, László & Tasnádi, Attila, 2020. "Voting: A machine learning approach," Working Paper Series in Economics 145, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
- Chi Chen & Li Zhao & Wei Cao & Jiang Bian & Chunxiao Xing, 2020. "Trimming the Sail: A Second-order Learning Paradigm for Stock Prediction," Papers 2002.06878, arXiv.org.
- Barua, Ronil & Sharma, Anil K., 2022. "Dynamic Black Litterman portfolios with views derived via CNN-BiLSTM predictions," Finance Research Letters, Elsevier, vol. 49(C).
- Zhou, Hao & Kalev, Petko S., 2019. "Algorithmic and high frequency trading in Asia-Pacific, now and the future," Pacific-Basin Finance Journal, Elsevier, vol. 53(C), pages 186-207.
- Bartosz Bieganowski & Robert Ślepaczuk, 2024.
"Supervised Autoencoder MLP for Financial Time Series Forecasting,"
Working Papers
2024-03, Faculty of Economic Sciences, University of Warsaw.
- Bartosz Bieganowski & Robert Slepaczuk, 2024. "Supervised Autoencoder MLP for Financial Time Series Forecasting," Papers 2404.01866, arXiv.org, revised Jun 2024.
- Wang, Yijun & Andreeva, Galina & Martin-Barragan, Belen, 2023. "Machine learning approaches to forecasting cryptocurrency volatility: Considering internal and external determinants," International Review of Financial Analysis, Elsevier, vol. 90(C).
- Wei Pan & Jide Li & Xiaoqiang Li, 2020. "Portfolio Learning Based on Deep Learning," Future Internet, MDPI, vol. 12(11), pages 1-13, November.
More about this item
Keywords
Machine learning models; Chaotic systems; Recurrence time; Synchronization;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:165:y:2022:i:p2:s0960077922010104. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.