IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v93y2016icp1-13.html
   My bibliography  Save this article

Stochastic stability and state shifts for a time-delayed cancer growth system subjected to correlated multiplicative and additive noises

Author

Listed:
  • Wang, Kang Kang
  • Wang, Ya Jun
  • Li, Sheng Hong
  • Wu, Jian Cheng

Abstract

In the present paper, we investigate the stationary probability distribution(SPD) and the mean treatment time of a time-delayed cancer growth system induced by cross-correlated intrinsic and extrinsic noises. Our main results show that the resonant-like phenomenon of the mean first-passage time (MFPT) appears in the tumor cell growth model due to the interaction of all kinds of noises and time delay. Due to the existence of the resonant-like peak value, by increasing the intensity of multiplicative noise and time delay, it is possible to restrain effectively the development of the cancer cells and enhance the stability of the system. During the process of controlling the diffusion of the tumor cells, it contributes to inhibiting the development of cancer by increasing the cross-correlated noise strength and weakening the additive noise intensity and time delay. Meanwhile, the proper multiplicative noise intensity is conducive to the process of inhibition. Conversely, in the process of exterminating cancer cells of a large density, it can exert positive effects on eliminating the tumor cells by increasing noises intensities and the value of time delay.

Suggested Citation

  • Wang, Kang Kang & Wang, Ya Jun & Li, Sheng Hong & Wu, Jian Cheng, 2016. "Stochastic stability and state shifts for a time-delayed cancer growth system subjected to correlated multiplicative and additive noises," Chaos, Solitons & Fractals, Elsevier, vol. 93(C), pages 1-13.
  • Handle: RePEc:eee:chsofr:v:93:y:2016:i:c:p:1-13
    DOI: 10.1016/j.chaos.2016.09.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077916302855
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2016.09.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Song, Yi & Xu, Wei & Wei, Wei & Niu, Lizhi, 2023. "Dynamical transition of phenotypic states in breast cancer system with Lévy noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 627(C).
    2. Xu, Pengfei & Jin, Yanfei, 2018. "Mean first-passage time in a delayed tristable system driven by correlated multiplicative and additive white noises," Chaos, Solitons & Fractals, Elsevier, vol. 112(C), pages 75-82.
    3. Han, Ping & Xu, Wei & Zhang, Hongxia & Wang, Liang, 2022. "Most probable trajectories in the delayed tumor growth model excited by a multiplicative non-Gaussian noise," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:93:y:2016:i:c:p:1-13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.