IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v555y2020ics0378437120303046.html
   My bibliography  Save this article

The unified colored noise approximation of multidimensional stochastic dynamic system

Author

Listed:
  • Duan, Wei-Long
  • Fang, Hui

Abstract

The unified colored noise approximation of multidimensional stochastic dynamic system driven by correlated Gaussian colored noises is developed. For general multidimensional stochastic dynamic system driven by Gaussian colored noises, which maybe correlate with each other and have small or large correlation times, it is transformed into multidimensional stochastic dynamic system driven by white noises. By merging method of white noises, the multiple diffusion terms of each equation of system is merged into one diffusion term, then the unified colored noise approximation for multidimensional stochastic dynamic system is established. In order to facilitate application, the specific derivation formulas of the unified colored noise approximation for common one-dimensional, two-dimensional, and three-dimensional stochastic dynamic systems are also given respectively, among, one also proves that it includes the unified colored noise approximation for one-dimensional stochastic dynamic system previously created.

Suggested Citation

  • Duan, Wei-Long & Fang, Hui, 2020. "The unified colored noise approximation of multidimensional stochastic dynamic system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
  • Handle: RePEc:eee:phsmap:v:555:y:2020:i:c:s0378437120303046
    DOI: 10.1016/j.physa.2020.124624
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437120303046
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2020.124624?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Duan, Wei-Long & Fang, Hui & Zeng, Chunhua, 2019. "The stability analysis of tumor-immune responses to chemotherapy system with gaussian white noises," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 96-102.
    2. Zhang, Li & Cao, Li & Wu, Da-jin, 2004. "The research of single-mode laser driven by multiplicative colored noise with cross-correlation between the real and imaginary parts of the quantum noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 332(C), pages 207-218.
    3. Zhou, Bingchang & Xu, Wei, 2008. "Stochastic resonance in an asymmetric bistable system driven by multiplicative colored noise and additive white noise," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 1146-1151.
    4. Dong, Xiaohui & Zeng, Chunhua & Yang, Fengzao & Guan, Lin & Xie, Qingshuang & Duan, Weilong, 2018. "Non-Gaussian noise-weakened stability in a foraging colony system with time delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 851-870.
    5. Fuentes, M.A. & Wio, Horacio S. & Toral, Raúl, 2002. "Effective Markovian approximation for non-Gaussian noises: a path integral approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 303(1), pages 91-104.
    6. Shi, Peiming & Xia, Haifeng & Han, Dongying & Fu, Rongrong & Yuan, Danzhen, 2018. "Stochastic resonance in a time polo-delayed asymmetry bistable system driven by multiplicative white noise and additive color noise," Chaos, Solitons & Fractals, Elsevier, vol. 108(C), pages 8-14.
    7. Duan, Wei-Long & Fang, Hui & Zeng, Chunhua, 2019. "Second-order algorithm for simulating stochastic differential equations with white noises," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 491-497.
    8. Dong, Xiaohui & Wang, Ming & Zhong, Guang-Yan & Yang, Fengzao & Duan, Weilong & Li, Jiang-Cheng & Xiong, Kezhao & Zeng, Chunhua, 2018. "Stochastic delayed kinetics of foraging colony system under non-Gaussian noise," Chaos, Solitons & Fractals, Elsevier, vol. 112(C), pages 1-13.
    9. Gudyma, Yu.V., 2004. "Nonequilibrium first-order phase transition in semiconductor system driven by colored noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 331(1), pages 61-68.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Duan, Wei-Long, 2020. "The stability analysis of tumor-immune responses to chemotherapy system driven by Gaussian colored noises," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    2. Zheng, Chengli & Su, Kuangxi & Yao, Yinhong, 2021. "Hedging futures performance with denoising and noise-assisted strategies," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
    3. Duan, Wei-Long & Lin, Ling, 2021. "Noise and delay enhanced stability in tumor-immune responses to chemotherapy system," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Jian-Li & Duan, Wei-Long & Luo, Yuhui & Yang, Fengzao, 2020. "Time delay and non-Gaussian noise-enhanced stability of foraging colony system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    2. Liu, Jian & Cao, Jie & Wang, Youguo & Hu, Bing, 2019. "Asymmetric stochastic resonance in a bistable system driven by non-Gaussian colored noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 321-336.
    3. Duan, Wei-Long & Lin, Ling, 2021. "Noise and delay enhanced stability in tumor-immune responses to chemotherapy system," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    4. Bhowal, Sanchayan & Samanta, Ramkrishna Jyoti & Ray, Arnob & Bhattacharyya, Sirshendu & Hens, Chittaranjan, 2023. "Exploring the potential of collective learning to reduce foraging time," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    5. Pan, Yan & Ren, Yuhao & Duan, Fabing, 2018. "Noise benefits to robust M-estimation of location in dependent observations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 144-152.
    6. Zhang, Hongxia & Xu, Wei & Guo, Qin & Han, Ping & Qiao, Yan, 2020. "First escape probability and mean first exit time for a time-delayed ecosystem driven by non-Gaussian colored noise," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    7. Liu, Jian & Qiao, Zijian & Ding, Xiaojian & Hu, Bing & Zang, Chuanlai, 2021. "Stochastic resonance induced weak signal enhancement over controllable potential-well asymmetry," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    8. Wang, Min & Fang, Yuwen & Luo, Yuhui & Yang, Fengzao & Zeng, Chunhua & Duan, Wei-Long, 2019. "Influence of non-Gaussian noise on the coherent feed-forward loop with time delay," Chaos, Solitons & Fractals, Elsevier, vol. 129(C), pages 46-55.
    9. Han, Ping & Xu, Wei & Zhang, Hongxia & Wang, Liang, 2022. "Most probable trajectories in the delayed tumor growth model excited by a multiplicative non-Gaussian noise," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    10. Ai, Hao & Yang, GuiJiang & Liu, Wei & Wang, Qiubao, 2023. "A fast search method for optimal parameters of stochastic resonance based on stochastic bifurcation and its application in fault diagnosis of rolling bearings," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    11. Guo, Di & Li, Chun & Mei, Dong-Cheng, 2019. "Switch process induced by the sine-Wiener noises in the gene transcriptional regulatory system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1192-1202.
    12. Liu, Huixia & Lu, Lulu & Zhu, Yuan & Wei, Zhouchao & Yi, Ming, 2022. "Stochastic resonance: The response to envelope modulation signal for neural networks with different topologies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    13. Hao, Mengli & Jia, Wantao & Wang, Liang & Li, Fuxiao, 2022. "Most probable trajectory of a tumor model with immune response subjected to asymmetric Lévy noise," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    14. Guo, Yongfeng & Wang, Linjie & Wei, Fang & Tan, Jianguo, 2019. "Dynamical behavior of simplified FitzHugh-Nagumo neural system driven by Lévy noise and Gaussian white noise," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 118-126.
    15. Hongler, Max-Olivier & Filliger, Roger & Blanchard, Philippe, 2006. "Soluble models for dynamics driven by a super-diffusive noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(2), pages 301-315.
    16. Wu, Jiancheng & Li, Xuan & Liu, Xianbin, 2016. "The moment Lyapunov exponent of a co-dimension two bifurcation system driven by non-Gaussian colored noise," Applied Mathematics and Computation, Elsevier, vol. 286(C), pages 189-200.
    17. Dong, Yang & Wen, Shu-hui & Hu, Xiao-bing & Li, Jiang-Cheng, 2020. "Stochastic resonance of drawdown risk in energy market prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    18. Duan, Wei-Long & Fang, Hui & Zeng, Chunhua, 2019. "The stability analysis of tumor-immune responses to chemotherapy system with gaussian white noises," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 96-102.
    19. Lumi, Neeme & Laas, Katrin & Mankin, Romi, 2015. "Rising relative fluctuation as a warning indicator of discontinuous transitions in symbiotic metapopulations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 109-118.
    20. Zhang, Huiqing & Xu, Wei & Xu, Yong, 2009. "The study on a stochastic system with non-Gaussian noise and Gaussian colored noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(6), pages 781-788.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:555:y:2020:i:c:s0378437120303046. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.