IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v303y2002i1p91-104.html
   My bibliography  Save this article

Effective Markovian approximation for non-Gaussian noises: a path integral approach

Author

Listed:
  • Fuentes, M.A.
  • Wio, Horacio S.
  • Toral, Raúl

Abstract

We have analyzed diffusion in a double well potential driven by a colored non-Gaussian noise. Using a path-integral approach we have obtained a consistent Markovian approximation to the initially non-Markovian problem. Such an approximation allows us to get analytical expressions for the “mean-first-passage-time” that has been tested against extensive numerical simulations.

Suggested Citation

  • Fuentes, M.A. & Wio, Horacio S. & Toral, Raúl, 2002. "Effective Markovian approximation for non-Gaussian noises: a path integral approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 303(1), pages 91-104.
  • Handle: RePEc:eee:phsmap:v:303:y:2002:i:1:p:91-104
    DOI: 10.1016/S0378-4371(01)00435-6
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437101004356
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/S0378-4371(01)00435-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hongler, Max-Olivier & Filliger, Roger & Blanchard, Philippe, 2006. "Soluble models for dynamics driven by a super-diffusive noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(2), pages 301-315.
    2. Wu, Jian-Li & Duan, Wei-Long & Luo, Yuhui & Yang, Fengzao, 2020. "Time delay and non-Gaussian noise-enhanced stability of foraging colony system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    3. Pan, Yan & Ren, Yuhao & Duan, Fabing, 2018. "Noise benefits to robust M-estimation of location in dependent observations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 144-152.
    4. Ai, Hao & Yang, GuiJiang & Liu, Wei & Wang, Qiubao, 2023. "A fast search method for optimal parameters of stochastic resonance based on stochastic bifurcation and its application in fault diagnosis of rolling bearings," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    5. Wang, Min & Fang, Yuwen & Luo, Yuhui & Yang, Fengzao & Zeng, Chunhua & Duan, Wei-Long, 2019. "Influence of non-Gaussian noise on the coherent feed-forward loop with time delay," Chaos, Solitons & Fractals, Elsevier, vol. 129(C), pages 46-55.
    6. Zhang, Ruiting & Hou, Zhonghuai & Xin, Houwen, 2011. "Effects of non-Gaussian noise near supercritical Hopf bifurcation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(2), pages 147-153.
    7. Zhang, Hongxia & Xu, Wei & Guo, Qin & Han, Ping & Qiao, Yan, 2020. "First escape probability and mean first exit time for a time-delayed ecosystem driven by non-Gaussian colored noise," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    8. Liu, Jian & Cao, Jie & Wang, Youguo & Hu, Bing, 2019. "Asymmetric stochastic resonance in a bistable system driven by non-Gaussian colored noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 321-336.
    9. Baravalle, Roman & Rosso, Osvaldo A. & Montani, Fernando, 2017. "A path integral approach to the Hodgkin–Huxley model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 986-999.
    10. Guo, Yong-Feng & Wei, Fang & Xi, Bei & Tan, Jian-Guo, 2018. "The instability probability density evolution of the bistable system driven by Gaussian colored noise and white noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 200-208.
    11. Wu, Jiancheng & Li, Xuan & Liu, Xianbin, 2016. "The moment Lyapunov exponent of a co-dimension two bifurcation system driven by non-Gaussian colored noise," Applied Mathematics and Computation, Elsevier, vol. 286(C), pages 189-200.
    12. Dong, Xiaohui & Wang, Ming & Zhong, Guang-Yan & Yang, Fengzao & Duan, Weilong & Li, Jiang-Cheng & Xiong, Kezhao & Zeng, Chunhua, 2018. "Stochastic delayed kinetics of foraging colony system under non-Gaussian noise," Chaos, Solitons & Fractals, Elsevier, vol. 112(C), pages 1-13.
    13. Liu, Chenggong & Shang, Pengjian & Feng, Guochen, 2017. "The high order dispersion analysis based on first-passage-time probability in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 1-9.
    14. Han, Ping & Xu, Wei & Zhang, Hongxia & Wang, Liang, 2022. "Most probable trajectories in the delayed tumor growth model excited by a multiplicative non-Gaussian noise," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    15. Guo, Qin & Sun, Zhongkui & Xu, Wei, 2016. "The properties of the anti-tumor model with coupling non-Gaussian noise and Gaussian colored noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 43-52.
    16. Duan, Wei-Long & Fang, Hui, 2020. "The unified colored noise approximation of multidimensional stochastic dynamic system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
    17. Zhu, Ping, 2021. "An equivalent analytical method to deal with cross-correlated exponential type noises in the nonlinear dynamic system," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    18. Zhang, Huiqing & Xu, Wei & Xu, Yong, 2009. "The study on a stochastic system with non-Gaussian noise and Gaussian colored noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(6), pages 781-788.
    19. Guo, Yongfeng & Wang, Linjie & Wei, Fang & Tan, Jianguo, 2019. "Dynamical behavior of simplified FitzHugh-Nagumo neural system driven by Lévy noise and Gaussian white noise," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 118-126.
    20. Hua, Mengjiao & Wu, Yu, 2022. "Transition and basin stability in a stochastic tumor growth model with immunization," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:303:y:2002:i:1:p:91-104. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.