IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v150y2021ics0960077921004677.html
   My bibliography  Save this article

Two-parameter fractional Tsallis information dimensions of complex networks

Author

Listed:
  • Ramirez-Arellano, Aldo
  • Hernández-Simón, Luis Manuel
  • Bory-Reyes, Juan

Abstract

A two-parameter (namely, α→ and β→) fractional Tsallis information dimensions of complex networks based on q−logarithm is introduced. The meanings assigned to such parameters are the quantification of the interaction among the elements (nodes) that are part of the same sub-system (sub-network) and the interaction among the sub-systems (sub-networks), respectively. Also, the index of interaction ι – formulated based on the α→ and β→– captures the networks’ complex topology.

Suggested Citation

  • Ramirez-Arellano, Aldo & Hernández-Simón, Luis Manuel & Bory-Reyes, Juan, 2021. "Two-parameter fractional Tsallis information dimensions of complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
  • Handle: RePEc:eee:chsofr:v:150:y:2021:i:c:s0960077921004677
    DOI: 10.1016/j.chaos.2021.111113
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921004677
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111113?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chaoming Song & Shlomo Havlin & Hernán A. Makse, 2005. "Self-similarity of complex networks," Nature, Nature, vol. 433(7024), pages 392-395, January.
    2. Ramirez-Arellano, Aldo & Bermúdez-Gómez, Salvador & Hernández-Simón, Luis Manuel & Bory-Reyes, Juan, 2019. "D-summable fractal dimensions of complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 210-214.
    3. Ramirez-Arellano, Aldo & Hernández-Simón, Luis Manuel & Bory-Reyes, Juan, 2020. "A box-covering Tsallis information dimension and non-extensive property of complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    4. Lavagno, A & Swamy, P.Narayana, 2002. "q-Deformed structures and nonextensive statistics: a comparative study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 305(1), pages 310-315.
    5. G. Kaniadakis, 2009. "Maximum entropy principle and power-law tailed distributions," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 70(1), pages 3-13, July.
    6. Qi Zhang & Meizhu Li & Yong Deng, 2016. "A new structure entropy of complex networks based on nonextensive statistical mechanics," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 27(10), pages 1-12, October.
    7. Duan, Shuyu & Wen, Tao & Jiang, Wen, 2019. "A new information dimension of complex network based on Rényi entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 529-542.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lei, Mingli & Cheong, Kang Hao, 2022. "Node influence ranking in complex networks: A local structure entropy approach," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    2. Ortiz-Vilchis, Pilar & Lei, Mingli & Ramirez-Arellano, Aldo, 2024. "Reformulation of Deng information dimension of complex networks based on a sigmoid asymptote," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramirez-Arellano, Aldo & Hernández-Simón, Luis Manuel & Bory-Reyes, Juan, 2020. "A box-covering Tsallis information dimension and non-extensive property of complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    2. Lei, Mingli, 2022. "Information dimension based on Deng entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    3. Ortiz-Vilchis, Pilar & Lei, Mingli & Ramirez-Arellano, Aldo, 2024. "Reformulation of Deng information dimension of complex networks based on a sigmoid asymptote," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    4. Feng, Shiyuan & Weng, Tongfeng & Chen, Xiaolu & Ren, Zhuoming & Su, Chang & Li, Chunzi, 2024. "Scaling law of diffusion processes on fractal networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 640(C).
    5. Li, Meizhu & Zhang, Qi & Deng, Yong, 2018. "Evidential identification of influential nodes in network of networks," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 283-296.
    6. Pavón-Domínguez, Pablo & Moreno-Pulido, Soledad, 2022. "Sandbox fixed-mass algorithm for multifractal unweighted complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    7. Wu, Zhenxing & Lu, Xi & Deng, Yong, 2015. "Image edge detection based on local dimension: A complex networks approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 440(C), pages 9-18.
    8. Xie, Wen-Jie & Zhou, Wei-Xing, 2011. "Horizontal visibility graphs transformed from fractional Brownian motions: Topological properties versus the Hurst index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3592-3601.
    9. Yu-Hsiang Fu & Chung-Yuan Huang & Chuen-Tsai Sun, 2017. "A community detection algorithm using network topologies and rule-based hierarchical arc-merging strategies," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-30, November.
    10. Zhou, Wei-Xing & Jiang, Zhi-Qiang & Sornette, Didier, 2007. "Exploring self-similarity of complex cellular networks: The edge-covering method with simulated annealing and log-periodic sampling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 375(2), pages 741-752.
    11. Werner, Gerhard, 2013. "Consciousness viewed in the framework of brain phase space dynamics, criticality, and the Renormalization Group," Chaos, Solitons & Fractals, Elsevier, vol. 55(C), pages 3-12.
    12. Kaiwei Liu & Xingcheng Wang & Zhihui Qu, 2019. "Train Operation Strategy Optimization Based on a Double-Population Genetic Particle Swarm Optimization Algorithm," Energies, MDPI, vol. 12(13), pages 1-26, June.
    13. Ikeda, Nobutoshi, 2019. "Growth model for fractal scale-free networks generated by a random walk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 424-434.
    14. McKeague, Ian W., 2015. "Central limit theorems under special relativity," Statistics & Probability Letters, Elsevier, vol. 99(C), pages 149-155.
    15. Yang, Qing-Lin & Wang, Li-Fu & Zhao, Guo-Tao & Guo, Ge, 2020. "A coarse graining algorithm based on m-order degree in complex network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).
    16. Zhang, Xiaohang & Cui, Huiyuan & Zhu, Ji & Du, Yu & Wang, Qi & Shi, Wenhua, 2017. "Measuring the dissimilarity of multiplex networks: An empirical study of international trade networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 380-394.
    17. Wen, Tao & Jiang, Wen, 2019. "Identifying influential nodes based on fuzzy local dimension in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 332-342.
    18. Zeng, Zhi-Jian & Xie, Chi & Yan, Xin-Guo & Hu, Jue & Mao, Zhou, 2016. "Are stock market networks non-fractal? Evidence from New York Stock Exchange," Finance Research Letters, Elsevier, vol. 17(C), pages 97-102.
    19. Blagus, Neli & Šubelj, Lovro & Bajec, Marko, 2012. "Self-similar scaling of density in complex real-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2794-2802.
    20. Zhijun SONG & Linjun YU, 2019. "Multifractal features of spatial variation in construction land in Beijing (1985–2015)," Palgrave Communications, Palgrave Macmillan, vol. 5(1), pages 1-15, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:150:y:2021:i:c:s0960077921004677. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.