IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v119y2019icp210-214.html
   My bibliography  Save this article

D-summable fractal dimensions of complex networks

Author

Listed:
  • Ramirez-Arellano, Aldo
  • Bermúdez-Gómez, Salvador
  • Hernández-Simón, Luis Manuel
  • Bory-Reyes, Juan

Abstract

In past two decades a wide range of complex systems, spanning many different disciplines, have been structured in the form of networks. Network dimension is a crucial concept to understand not only network topology, but also dynamical processes on networks. From the perspective of the box covering, volume dimension, information dimension, and correlation dimension several approaches have been proposed. We modify the commonly used definitions of the box dimension and information dimension to introduce a d-summable approach (a geometric notion that comes from geometric measure theory) of these dimensions. It is applied to calculate d-summable information dimension of several real complex networks. We offer empirical evidence to support the conjecture that d-summable information model worth carrying out than information model for several networks.

Suggested Citation

  • Ramirez-Arellano, Aldo & Bermúdez-Gómez, Salvador & Hernández-Simón, Luis Manuel & Bory-Reyes, Juan, 2019. "D-summable fractal dimensions of complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 210-214.
  • Handle: RePEc:eee:chsofr:v:119:y:2019:i:c:p:210-214
    DOI: 10.1016/j.chaos.2018.12.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077919300025
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2018.12.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chaoming Song & Shlomo Havlin & Hernán A. Makse, 2005. "Self-similarity of complex networks," Nature, Nature, vol. 433(7024), pages 392-395, January.
    2. Zhang, Qi & Luo, Chuanhai & Li, Meizhu & Deng, Yong & Mahadevan, Sankaran, 2015. "Tsallis information dimension of complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 707-717.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Yubo & Dong, Hongli & Zhang, Weidong & Lu, Junguo, 2019. "Stability analysis of nonlinear oscillator networks based on the mechanism of cascading failures," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 5-15.
    2. Lei, Mingli, 2022. "Information dimension based on Deng entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    3. Du, Yuxian & Lin, Xi & Pan, Ye & Chen, Zhaoxin & Xia, Huan & Luo, Qian, 2023. "Identifying influential airports in airline network based on failure risk factors with TOPSIS," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    4. Pavón-Domínguez, Pablo & Moreno-Pulido, Soledad, 2022. "Sandbox fixed-mass algorithm for multifractal unweighted complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    5. Feng, Shiyuan & Weng, Tongfeng & Chen, Xiaolu & Ren, Zhuoming & Su, Chang & Li, Chunzi, 2024. "Scaling law of diffusion processes on fractal networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 640(C).
    6. Ramirez-Arellano, Aldo & Hernández-Simón, Luis Manuel & Bory-Reyes, Juan, 2021. "Two-parameter fractional Tsallis information dimensions of complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    7. Ramirez-Arellano, Aldo & Hernández-Simón, Luis Manuel & Bory-Reyes, Juan, 2020. "A box-covering Tsallis information dimension and non-extensive property of complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duan, Shuyu & Wen, Tao & Jiang, Wen, 2019. "A new information dimension of complex network based on Rényi entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 529-542.
    2. Li, Meizhu & Zhang, Qi & Deng, Yong, 2018. "Evidential identification of influential nodes in network of networks," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 283-296.
    3. Ramirez-Arellano, Aldo & Hernández-Simón, Luis Manuel & Bory-Reyes, Juan, 2020. "A box-covering Tsallis information dimension and non-extensive property of complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    4. Nie, Chun-Xiao & Song, Fu-Tie, 2018. "Analyzing the stock market based on the structure of kNN network," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 148-159.
    5. Yao, Jialing & Sun, Bingbin & Xi, lifeng, 2019. "Fractality of evolving self-similar networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 211-216.
    6. Ikeda, Nobutoshi, 2020. "Fractal networks induced by movements of random walkers on a tree graph," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    7. Sun, Bingbin & Yao, Jialing & Xi, Lifeng, 2019. "Eigentime identities of fractal sailboat networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 338-349.
    8. Lu, Qing-Chang & Xu, Peng-Cheng & Zhao, Xiangmo & Zhang, Lei & Li, Xiaoling & Cui, Xin, 2022. "Measuring network interdependency between dependent networks: A supply-demand-based approach," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    9. Lambiotte, R. & Panzarasa, P., 2009. "Communities, knowledge creation, and information diffusion," Journal of Informetrics, Elsevier, vol. 3(3), pages 180-190.
    10. Zhang, Qi & Luo, Chuanhai & Li, Meizhu & Deng, Yong & Mahadevan, Sankaran, 2015. "Tsallis information dimension of complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 707-717.
    11. Aldrich, Preston R. & El-Zabet, Jermeen & Hassan, Seerat & Briguglio, Joseph & Aliaj, Enela & Radcliffe, Maria & Mirza, Taha & Comar, Timothy & Nadolski, Jeremy & Huebner, Cynthia D., 2015. "Monte Carlo tests of small-world architecture for coarse-grained networks of the United States railroad and highway transportation systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 32-39.
    12. Retière, N. & Sidqi, Y. & Frankhauser, P., 2022. "A steady-state analysis of distribution networks by diffusion-limited-aggregation and multifractal geometry," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    13. Gros, Daniel & De Groen, Willem Pieter, 2015. "Will the Single Resolution Fund be a ‘baby tiger’ during the transition?," CEPS Papers 11192, Centre for European Policy Studies.
    14. Xi, Lifeng & Wang, Lihong & Wang, Songjing & Yu, Zhouyu & Wang, Qin, 2017. "Fractality and scale-free effect of a class of self-similar networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 478(C), pages 31-40.
    15. Meng, Xiangyi & Zhou, Bin, 2023. "Scale-free networks beyond power-law degree distribution," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    16. Yin, Likang & Deng, Yong, 2018. "Measuring transferring similarity via local information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 498(C), pages 102-115.
    17. Fan Xu & Zeng Zhou & Sergio Fagherazzi & Andrea D’Alpaos & Ian Townend & Kun Zhao & Weiming Xie & Leicheng Guo & Xianye Wang & Zhong Peng & Zhicheng Yang & Chunpeng Chen & Guangcheng Cheng & Yuan Xu &, 2024. "Anomalous scaling of branching tidal networks in global coastal wetlands and mudflats," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    18. Rosenberg, Eric, 2018. "Generalized Hausdorff dimensions of a complex network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 511(C), pages 1-17.
    19. Xuezai Pan & Xudong Shang, 2022. "The Uniform Convergence Property of Sequence of Fractal Interpolation Functions in Complicated Networks," Mathematics, MDPI, vol. 10(20), pages 1-8, October.
    20. Ou, Ruiqiu & Yang, Jianmei, 2012. "On structural properties of scale-free networks with finite size," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 887-894.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:119:y:2019:i:c:p:210-214. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.