IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v70y2009i1p3-13.html
   My bibliography  Save this article

Maximum entropy principle and power-law tailed distributions

Author

Listed:
  • G. Kaniadakis

Abstract

No abstract is available for this item.

Suggested Citation

  • G. Kaniadakis, 2009. "Maximum entropy principle and power-law tailed distributions," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 70(1), pages 3-13, July.
  • Handle: RePEc:spr:eurphb:v:70:y:2009:i:1:p:3-13
    DOI: 10.1140/epjb/e2009-00161-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1140/epjb/e2009-00161-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1140/epjb/e2009-00161-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. da Silva, Sérgio Luiz E.F. & Silva, R. & dos Santos Lima, Gustavo Z. & de Araújo, João M. & Corso, Gilberto, 2022. "An outlier-resistant κ-generalized approach for robust physical parameter estimation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    2. Kaiwei Liu & Xingcheng Wang & Zhihui Qu, 2019. "Train Operation Strategy Optimization Based on a Double-Population Genetic Particle Swarm Optimization Algorithm," Energies, MDPI, vol. 12(13), pages 1-26, June.
    3. McKeague, Ian W., 2015. "Central limit theorems under special relativity," Statistics & Probability Letters, Elsevier, vol. 99(C), pages 149-155.
    4. Ramirez-Arellano, Aldo & Hernández-Simón, Luis Manuel & Bory-Reyes, Juan, 2021. "Two-parameter fractional Tsallis information dimensions of complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    5. de Lima, M.M.F. & Costa, M.O. & Silva, R. & Fulco, U.L. & Oliveira, J.I.N. & Vasconcelos, M.S. & Anselmo, D.H.A.L., 2024. "Viral proteins length distributions: A comparative analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    6. Sarabia, José María & Prieto, Faustino & Trueba, Carmen & Jordá, Vanesa, 2013. "About the modified Gaussian family of income distributions with applications to individual incomes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(6), pages 1398-1408.
    7. Fabio CLEMENTI & Mauro GALLEGATI, 2017. "NEW ECONOMIC WINDOWS ON INCOME AND WEALTH: THE k-GENERALIZED FAMILY OF DISTRIBUTIONS," Journal of Social and Economic Statistics, Bucharest University of Economic Studies, vol. 6(1), pages 1-15, JULY.
    8. Giuseppe Gaetano Luciano, 2024. "Kaniadakis entropy in extreme gravitational and cosmological environments: a review on the state-of-the-art and future prospects," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(6), pages 1-13, June.
    9. Chami Figueira, F. & Moura, N.J. & Ribeiro, M.B., 2011. "The Gompertz–Pareto income distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(4), pages 689-698.
    10. Stella, Massimo & Brede, Markus, 2014. "A κ-deformed model of growing complex networks with fitness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 407(C), pages 360-368.
    11. Asgarani, Somayeh, 2013. "A set of new three-parameter entropies in terms of a generalized incomplete Gamma function," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(9), pages 1972-1976.
    12. Vallejos, Adams & Ormazábal, Ignacio & Borotto, Félix A. & Astudillo, Hernán F., 2019. "A new κ-deformed parametric model for the size distribution of wealth," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 819-829.
    13. Furuichi, Shigeru & Mitroi, Flavia-Corina, 2012. "Mathematical inequalities for some divergences," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 388-400.
    14. Ervin Kaminski Lenzi & Luiz Roberto Evangelista & Luciano Rodrigues da Silva, 2023. "Aspects of Quantum Statistical Mechanics: Fractional and Tsallis Approaches," Mathematics, MDPI, vol. 11(12), pages 1-15, June.
    15. Qin, Xianan & Song, Congwei, 2021. "Towards understanding the non-Gaussian pore size distributions of nonwoven fabrics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:70:y:2009:i:1:p:3-13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.