IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v600y2022ics0378437122004034.html
   My bibliography  Save this article

Information dimension based on Deng entropy

Author

Listed:
  • Lei, Mingli

Abstract

Information dimension is applied to quantify fractal, and the current methods are improved on the basis of information entropy. Although information entropy is always used to measure the information volume, it fails when dealing with complex and uncertain information. To solve this problem, in this paper, the information dimension is defined by using Deng entropy, due to the reason that Deng entropy as the extension of information entropy has the characteristic of being able to measure uncertain information better. In our method, Deng entropy is considered to measure the information volume in the information dimension. Besides, box coverage is also combined in the process of the box covering to define box coverage Deng entropy information dimension. In addition, the classical information dimension and box dimension of BA scale-free networks, WS and NW small-world networks and four real networks are calculated to compare with the proposed information dimension. The results show that the values of Deng entropy information dimension and box coverage Deng entropy information dimension are bigger than the classical information dimension and box dimension for the same network. Moreover, the information dimension of the networks does not increase linearly with the increase of nodes.

Suggested Citation

  • Lei, Mingli, 2022. "Information dimension based on Deng entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
  • Handle: RePEc:eee:phsmap:v:600:y:2022:i:c:s0378437122004034
    DOI: 10.1016/j.physa.2022.127584
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437122004034
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.127584?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cui, Huizi & Zhou, Lingge & Li, Yan & Kang, Bingyi, 2022. "Belief entropy-of-entropy and its application in the cardiac interbeat interval time series analysis," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    2. Wang, Ying & Zheng, Yunan & Shi, Xuelei & Liu, Yiguang, 2022. "An effective heuristic clustering algorithm for mining multiple critical nodes in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
    3. Chenhui Qiang & Yong Deng & Kang Hao Cheong, 2022. "Information Fractal Dimension Of Mass Function," FRACTALS (fractals), World Scientific Publishing Co. Pte. Ltd., vol. 30(06), pages 1-12, September.
    4. Wen, Tao & Jiang, Wen, 2018. "An information dimension of weighted complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 388-399.
    5. Wang, Hongping & Fang, Yi-Ping & Zio, Enrico, 2022. "Resilience-oriented optimal post-disruption reconfiguration for coupled traffic-power systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    6. Qiuya Gao & Tao Wen & Yong Deng, 2021. "Information Volume Fractal Dimension," FRACTALS (fractals), World Scientific Publishing Co. Pte. Ltd., vol. 29(08), pages 1-9, December.
    7. Ramirez-Arellano, Aldo & Hernández-Simón, Luis Manuel & Bory-Reyes, Juan, 2020. "A box-covering Tsallis information dimension and non-extensive property of complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    8. Lei Chen & Ling Diao & Jun Sang, 2019. "A novel weighted evidence combination rule based on improved entropy function with a diagnosis application," International Journal of Distributed Sensor Networks, , vol. 15(1), pages 15501477188, January.
    9. Duncan J. Watts & Steven H. Strogatz, 1998. "Collective dynamics of ‘small-world’ networks," Nature, Nature, vol. 393(6684), pages 440-442, June.
    10. Mali, P. & Manna, S.K. & Mukhopadhyay, A. & Haldar, P.K. & Singh, G., 2018. "Multifractal analysis of multiparticle emission data in the framework of visibility graph and sandbox algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 493(C), pages 253-266.
    11. Duan, Shuyu & Wen, Tao & Jiang, Wen, 2019. "A new information dimension of complex network based on Rényi entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 529-542.
    12. Wen, Tao & Jiang, Wen, 2019. "Identifying influential nodes based on fuzzy local dimension in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 332-342.
    13. Chaoming Song & Shlomo Havlin & Hernán A. Makse, 2005. "Self-similarity of complex networks," Nature, Nature, vol. 433(7024), pages 392-395, January.
    14. Ramirez-Arellano, Aldo & Bermúdez-Gómez, Salvador & Hernández-Simón, Luis Manuel & Bory-Reyes, Juan, 2019. "D-summable fractal dimensions of complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 210-214.
    15. Qianli Zhou & Hongming Mo & Yong Deng, 2020. "A New Divergence Measure of Pythagorean Fuzzy Sets Based on Belief Function and Its Application in Medical Diagnosis," Mathematics, MDPI, vol. 8(1), pages 1-20, January.
    16. Sarkheil, Hamid & Rahbari, Shahrokh & Rayegani, Behzad, 2020. "Conversion based fuzzy fractal dimension integrating self-similarity and porosity, via DFS and FIS (Mamdani and Sugeno systems)," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    17. Pablo M. Gleiser & Leon Danon, 2003. "Community Structure In Jazz," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 6(04), pages 565-573.
    18. Jia Wang & Zhiping Wang & Ping Yu & Peiwen Wang, 2022. "The SEIR Dynamic Evolutionary Model with Markov Chains in Hyper Networks," Sustainability, MDPI, vol. 14(20), pages 1-16, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ortiz-Vilchis, Pilar & Lei, Mingli & Ramirez-Arellano, Aldo, 2024. "Reformulation of Deng information dimension of complex networks based on a sigmoid asymptote," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    2. Li, Siran & Xiao, Fuyuan, 2023. "Normal distribution based on maximum Deng entropy," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramirez-Arellano, Aldo & Hernández-Simón, Luis Manuel & Bory-Reyes, Juan, 2020. "A box-covering Tsallis information dimension and non-extensive property of complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    2. Ortiz-Vilchis, Pilar & Lei, Mingli & Ramirez-Arellano, Aldo, 2024. "Reformulation of Deng information dimension of complex networks based on a sigmoid asymptote," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    3. Ramirez-Arellano, Aldo & Hernández-Simón, Luis Manuel & Bory-Reyes, Juan, 2021. "Two-parameter fractional Tsallis information dimensions of complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    4. Zhou, Qianli & Deng, Yong, 2023. "Generating Sierpinski gasket from matrix calculus in Dempster–Shafer theory," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    5. Li, Siran & Xiao, Fuyuan, 2023. "Normal distribution based on maximum Deng entropy," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    6. Zhao, Tong & Li, Zhen & Deng, Yong, 2024. "Linearity in Deng entropy," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    7. Yu, Zihan & Deng, Yong, 2022. "Derive power law distribution with maximum Deng entropy," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    8. Duan, Shuyu & Wen, Tao & Jiang, Wen, 2019. "A new information dimension of complex network based on Rényi entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 529-542.
    9. Rosenberg, Eric, 2018. "Generalized Hausdorff dimensions of a complex network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 511(C), pages 1-17.
    10. Liu, Panfeng & Li, Longjie & Fang, Shiyu & Yao, Yukai, 2021. "Identifying influential nodes in social networks: A voting approach," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    11. Wen, Tao & Jiang, Wen, 2019. "Identifying influential nodes based on fuzzy local dimension in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 332-342.
    12. Du, Yuxian & Lin, Xi & Pan, Ye & Chen, Zhaoxin & Xia, Huan & Luo, Qian, 2023. "Identifying influential airports in airline network based on failure risk factors with TOPSIS," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    13. Huang, Binchao & Yang, Jin-Xuan & Li, Xin, 2021. "Identifying influential links to control spreading of epidemics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    14. Hu, Yuntong & Xiao, Fuyuan, 2022. "An efficient forecasting method for time series based on visibility graph and multi-subgraph similarity," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    15. Li, Heyang & Zeng, An, 2022. "Improving recommendation by connecting user behavior in temporal and topological dimensions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    16. Pavón-Domínguez, Pablo & Moreno-Pulido, Soledad, 2022. "Sandbox fixed-mass algorithm for multifractal unweighted complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    17. Xinyu Huang & Dongming Chen & Dongqi Wang & Tao Ren, 2020. "MINE: Identifying Top- k Vital Nodes in Complex Networks via Maximum Influential Neighbors Expansion," Mathematics, MDPI, vol. 8(9), pages 1-25, August.
    18. Xingyuan Chen & Yong Deng, 2022. "An Evidential Software Risk Evaluation Model," Mathematics, MDPI, vol. 10(13), pages 1-19, July.
    19. Huang, Liang & Zheng, Yu, 2023. "Asymptotic formula on APL of fractal evolving networks generated by Durer Pentagon," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    20. Li, Hanwen & Shang, Qiuyan & Deng, Yong, 2021. "A generalized gravity model for influential spreaders identification in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:600:y:2022:i:c:s0378437122004034. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.