IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v188y2024ics0960077924010385.html
   My bibliography  Save this article

Type-II Apollonian network: More robust and more efficient Apollonian network

Author

Listed:
  • Ma, Fei
  • Ouyang, Jinzhi
  • Shi, Haobin
  • Pan, Wei
  • Wang, Ping

Abstract

The family of planar graphs is a particularly important family and models many networks including the layout of printed circuits. The widely-known Apollonian packing process has been used as guideline to create the typical Apollonian network with planarity. In this paper, we propose a new principled framework based on the Apollonian packing process to generate model as complex network, and obtain a family of new networks called Type-II Apollonian network At. While our network and the typical Apollonian network are maximal planar, the former turns out to be Hamiltonian and Eulerian, however, the latter is not. Then, we in-depth study some fundamental structural properties on network At, and verify that network At is sparse, has scale-free feature and small-world property, and exhibits disassortative mixing structure. Next, we derive the asymptotic solution of the spanning tree entropy of network At by designing an effective algorithm, which suggests that Type-II Apollonian network is more robust to a random removal of edges than the typical Apollonian network. Additionally, we study trapping problem on network At, and use average trapping time as metric to show that Type-II Apollonian network At has more efficient underlying structure for fast information diffusion than the typical Apollonian network.

Suggested Citation

  • Ma, Fei & Ouyang, Jinzhi & Shi, Haobin & Pan, Wei & Wang, Ping, 2024. "Type-II Apollonian network: More robust and more efficient Apollonian network," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
  • Handle: RePEc:eee:chsofr:v:188:y:2024:i:c:s0960077924010385
    DOI: 10.1016/j.chaos.2024.115486
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924010385
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115486?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:188:y:2024:i:c:s0960077924010385. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.