IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v419y2015icp707-717.html
   My bibliography  Save this article

Tsallis information dimension of complex networks

Author

Listed:
  • Zhang, Qi
  • Luo, Chuanhai
  • Li, Meizhu
  • Deng, Yong
  • Mahadevan, Sankaran

Abstract

The fractal and self-similarity properties are revealed in many complex networks. The information dimension is a useful method to describe the fractal and self-similarity properties of the complex networks. In order to show the influence of different parts in the complex networks to the information dimension, we have proposed a new information dimension based on the Tsallis entropy namely the Tsallis information dimension. The proposed information dimension is changed according to the scale which is described by the nonextensivity parameter q, and it is inverse with the nonextensivity parameter q. The existing information dimension is a special case of the Tsallis information dimension when q=1. The Tsallis information dimension is a generalized information dimension of the complex networks.

Suggested Citation

  • Zhang, Qi & Luo, Chuanhai & Li, Meizhu & Deng, Yong & Mahadevan, Sankaran, 2015. "Tsallis information dimension of complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 707-717.
  • Handle: RePEc:eee:phsmap:v:419:y:2015:i:c:p:707-717
    DOI: 10.1016/j.physa.2014.10.071
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437114009091
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2014.10.071?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Deng, Xinyang & Deng, Yong, 2014. "On the axiomatic requirement of range to measure uncertainty," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 406(C), pages 163-168.
    2. Moret, Marcelo A. & Antonio, Liliane Q. & Pereira, Hernane B.B., 2012. "Classical and fractal analysis of vehicle demand on the ferry-boat system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1657-1661.
    3. An, Xin-lei & Zhang, Li & Li, Yin-zhen & Zhang, Jian-gang, 2014. "Synchronization analysis of complex networks with multi-weights and its application in public traffic network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 412(C), pages 149-156.
    4. Chaoming Song & Shlomo Havlin & Hernán A. Makse, 2005. "Self-similarity of complex networks," Nature, Nature, vol. 433(7024), pages 392-395, January.
    5. Du, Yuxian & Gao, Cai & Hu, Yong & Mahadevan, Sankaran & Deng, Yong, 2014. "A new method of identifying influential nodes in complex networks based on TOPSIS," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 399(C), pages 57-69.
    6. Pereira, H.B.B. & Fadigas, I.S. & Senna, V. & Moret, M.A., 2011. "Semantic networks based on titles of scientific papers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(6), pages 1192-1197.
    7. Rosa, A.C.P. & de Jesus, J.C.O. & Moret, M.A., 2013. "Nonextensivity and entropy of astrophysical sources," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(23), pages 6079-6083.
    8. Cheng, Ranran & Peng, Mingshu & Yu, Weibin, 2014. "Pinning synchronization of delayed complex dynamical networks with nonlinear coupling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 426-431.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Park, Alex & Lappas, Petros, 2017. "Evaluating demand charge reduction for commercial-scale solar PV coupled with battery storage," Renewable Energy, Elsevier, vol. 108(C), pages 523-532.
    2. Gros, Daniel & De Groen, Willem Pieter, 2015. "Will the Single Resolution Fund be a �baby tiger� during the transition?," CEPS Papers 11192, Centre for European Policy Studies.
    3. Nie, Chun-Xiao & Song, Fu-Tie, 2018. "Analyzing the stock market based on the structure of kNN network," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 148-159.
    4. Ramirez-Arellano, Aldo & Hernández-Simón, Luis Manuel & Bory-Reyes, Juan, 2020. "A box-covering Tsallis information dimension and non-extensive property of complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    5. Li, Meizhu & Zhang, Qi & Deng, Yong, 2018. "Evidential identification of influential nodes in network of networks," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 283-296.
    6. Duan, Shuyu & Wen, Tao & Jiang, Wen, 2019. "A new information dimension of complex network based on Rényi entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 529-542.
    7. Ramirez-Arellano, Aldo & Bermúdez-Gómez, Salvador & Hernández-Simón, Luis Manuel & Bory-Reyes, Juan, 2019. "D-summable fractal dimensions of complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 210-214.
    8. Bafghi, Seyed Mohammad Amin Tabatabaei & Kamalvand, Mohammad & Morsali, Ali & Bozorgmehr, Mohammad Reza, 2018. "Radial distribution function within the framework of the Tsallis statistical mechanics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 857-867.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Zhenxing & Lu, Xi & Deng, Yong, 2015. "Image edge detection based on local dimension: A complex networks approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 440(C), pages 9-18.
    2. Jing Liu & Huapu Lu & Mingyu Chen & Jianyu Wang & Ying Zhang, 2020. "Macro Perspective Research on Transportation Safety: An Empirical Analysis of Network Characteristics and Vulnerability," Sustainability, MDPI, vol. 12(15), pages 1-18, August.
    3. Yao, Jialing & Sun, Bingbin & Xi, lifeng, 2019. "Fractality of evolving self-similar networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 211-216.
    4. Chaharborj, Sarkhosh Seddighi & Nabi, Khondoker Nazmoon & Feng, Koo Lee & Chaharborj, Shahriar Seddighi & Phang, Pei See, 2022. "Controlling COVID-19 transmission with isolation of influential nodes," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    5. Duan, Shuyu & Wen, Tao & Jiang, Wen, 2019. "A new information dimension of complex network based on Rényi entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 529-542.
    6. Ikeda, Nobutoshi, 2020. "Fractal networks induced by movements of random walkers on a tree graph," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    7. Sun, Bingbin & Yao, Jialing & Xi, Lifeng, 2019. "Eigentime identities of fractal sailboat networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 338-349.
    8. Lu, Qing-Chang & Xu, Peng-Cheng & Zhao, Xiangmo & Zhang, Lei & Li, Xiaoling & Cui, Xin, 2022. "Measuring network interdependency between dependent networks: A supply-demand-based approach," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    9. Shi, Jinyao & Zhou, Peipei & Cai, Shuiming & Jia, Qiang, 2023. "Exponential synchronization for multi-weighted dynamic networks via finite-level quantized control with adaptive scaling gain," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    10. Lambiotte, R. & Panzarasa, P., 2009. "Communities, knowledge creation, and information diffusion," Journal of Informetrics, Elsevier, vol. 3(3), pages 180-190.
    11. Agha Mohammad Ali Kermani, Mehrdad & Fatemi Ardestani, Seyed Farshad & Aliahmadi, Alireza & Barzinpour, Farnaz, 2017. "A novel game theoretic approach for modeling competitive information diffusion in social networks with heterogeneous nodes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 570-582.
    12. Aldrich, Preston R. & El-Zabet, Jermeen & Hassan, Seerat & Briguglio, Joseph & Aliaj, Enela & Radcliffe, Maria & Mirza, Taha & Comar, Timothy & Nadolski, Jeremy & Huebner, Cynthia D., 2015. "Monte Carlo tests of small-world architecture for coarse-grained networks of the United States railroad and highway transportation systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 32-39.
    13. Retière, N. & Sidqi, Y. & Frankhauser, P., 2022. "A steady-state analysis of distribution networks by diffusion-limited-aggregation and multifractal geometry," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    14. Kuo, Ting, 2017. "A modified TOPSIS with a different ranking index," European Journal of Operational Research, Elsevier, vol. 260(1), pages 152-160.
    15. Zareie, Ahmad & Sheikhahmadi, Amir, 2019. "EHC: Extended H-index Centrality measure for identification of users’ spreading influence in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 141-155.
    16. Xi, Lifeng & Wang, Lihong & Wang, Songjing & Yu, Zhouyu & Wang, Qin, 2017. "Fractality and scale-free effect of a class of self-similar networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 478(C), pages 31-40.
    17. Meng, Xiangyi & Zhou, Bin, 2023. "Scale-free networks beyond power-law degree distribution," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    18. Yin, Likang & Deng, Yong, 2018. "Measuring transferring similarity via local information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 498(C), pages 102-115.
    19. Rosenberg, Eric, 2018. "Generalized Hausdorff dimensions of a complex network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 511(C), pages 1-17.
    20. Deng, Xinyang & Deng, Yong, 2014. "On the axiomatic requirement of range to measure uncertainty," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 406(C), pages 163-168.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:419:y:2015:i:c:p:707-717. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.