IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v640y2024ics0378437124002139.html
   My bibliography  Save this article

Scaling law of diffusion processes on fractal networks

Author

Listed:
  • Feng, Shiyuan
  • Weng, Tongfeng
  • Chen, Xiaolu
  • Ren, Zhuoming
  • Su, Chang
  • Li, Chunzi

Abstract

We investigate diffusion processes on fractal networks at different length scales. This is achieved by the application of a box covering procedure. We find that a clearly scaling law emerges on a great variety of fractal networks. Specifically, a number of metrics for quantifying diffusion processes, such as Kemeny’s constant, the expected search time and its variation, follow a power-law with the number of boxes for covering. Furthermore, we identify a power-law relation between energy and the number of boxes. Remarkably, we show that the expected time for hunting a moving target similarly presents a power law behavior on a given fractal network. Our work reveals that scaling law is a common characteristic of fractal networks beyond their structural organization.

Suggested Citation

  • Feng, Shiyuan & Weng, Tongfeng & Chen, Xiaolu & Ren, Zhuoming & Su, Chang & Li, Chunzi, 2024. "Scaling law of diffusion processes on fractal networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 640(C).
  • Handle: RePEc:eee:phsmap:v:640:y:2024:i:c:s0378437124002139
    DOI: 10.1016/j.physa.2024.129704
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437124002139
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2024.129704?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gallos, Lazaros K. & Song, Chaoming & Makse, Hernán A., 2007. "A review of fractality and self-similarity in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 386(2), pages 686-691.
    2. Chaoming Song & Shlomo Havlin & Hernán A. Makse, 2005. "Self-similarity of complex networks," Nature, Nature, vol. 433(7024), pages 392-395, January.
    3. Ramirez-Arellano, Aldo & Bermúdez-Gómez, Salvador & Hernández-Simón, Luis Manuel & Bory-Reyes, Juan, 2019. "D-summable fractal dimensions of complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 210-214.
    4. H. Jeong & B. Tombor & R. Albert & Z. N. Oltvai & A.-L. Barabási, 2000. "The large-scale organization of metabolic networks," Nature, Nature, vol. 407(6804), pages 651-654, October.
    5. Theodore J. Perkins & Eric Foxall & Leon Glass & Roderick Edwards, 2014. "A scaling law for random walks on networks," Nature Communications, Nature, vol. 5(1), pages 1-7, December.
    6. Zhongzhi Zhang & Alafate Julaiti & Baoyu Hou & Hongjuan Zhang & Guanrong Chen, 2011. "Mean first-passage time for random walks on undirected networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 84(4), pages 691-697, December.
    7. D. D. Han & J. H. Qian & Y. G. Ma, 2011. "Emergence of double scaling law in complex system," Papers 1103.2001, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Jin & Le, Anbo & Wang, Qin & Xi, Lifeng, 2016. "A small-world and scale-free network generated by Sierpinski Pentagon," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 126-135.
    2. Ikeda, Nobutoshi, 2020. "Fractal networks induced by movements of random walkers on a tree graph," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    3. Xi, Lifeng & Wang, Lihong & Wang, Songjing & Yu, Zhouyu & Wang, Qin, 2017. "Fractality and scale-free effect of a class of self-similar networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 478(C), pages 31-40.
    4. Rosenberg, Eric, 2018. "Generalized Hausdorff dimensions of a complex network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 511(C), pages 1-17.
    5. Dai, Meifeng & Shao, Shuxiang & Su, Weiyi & Xi, Lifeng & Sun, Yanqiu, 2017. "The modified box dimension and average weighted receiving time of the weighted hierarchical graph," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 475(C), pages 46-58.
    6. Rasul Kochkarov & Azret Kochkarov, 2022. "Introduction to the Class of Prefractal Graphs," Mathematics, MDPI, vol. 10(14), pages 1-17, July.
    7. Xie, Wen-Jie & Zhou, Wei-Xing, 2011. "Horizontal visibility graphs transformed from fractional Brownian motions: Topological properties versus the Hurst index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3592-3601.
    8. Fu, Yu-Hsiang & Huang, Chung-Yuan & Sun, Chuen-Tsai, 2016. "Using a two-phase evolutionary framework to select multiple network spreaders based on community structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 840-853.
    9. Lei, Mingli, 2022. "Information dimension based on Deng entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    10. Pavón-Domínguez, Pablo & Moreno-Pulido, Soledad, 2022. "Sandbox fixed-mass algorithm for multifractal unweighted complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    11. Zhou, Wei-Xing & Jiang, Zhi-Qiang & Sornette, Didier, 2007. "Exploring self-similarity of complex cellular networks: The edge-covering method with simulated annealing and log-periodic sampling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 375(2), pages 741-752.
    12. Blagus, Neli & Šubelj, Lovro & Bajec, Marko, 2012. "Self-similar scaling of density in complex real-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2794-2802.
    13. Ramirez-Arellano, Aldo & Hernández-Simón, Luis Manuel & Bory-Reyes, Juan, 2020. "A box-covering Tsallis information dimension and non-extensive property of complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    14. Ma, Fei & Wang, Ping, 2024. "Understanding influence of fractal generative manner on structural properties of tree networks," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    15. Yu-Hsiang Fu & Chung-Yuan Huang & Chuen-Tsai Sun, 2017. "A community detection algorithm using network topologies and rule-based hierarchical arc-merging strategies," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-30, November.
    16. Ikeda, Nobutoshi, 2019. "Growth model for fractal scale-free networks generated by a random walk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 424-434.
    17. Zong, Yue & Dai, Meifeng & Wang, Xiaoqian & He, Jiaojiao & Zou, Jiahui & Su, Weiyi, 2018. "Network coherence and eigentime identity on a family of weighted fractal networks," Chaos, Solitons & Fractals, Elsevier, vol. 109(C), pages 184-194.
    18. Livi, Lorenzo & Maiorino, Enrico & Pinna, Andrea & Sadeghian, Alireza & Rizzi, Antonello & Giuliani, Alessandro, 2016. "Analysis of heat kernel highlights the strongly modular and heat-preserving structure of proteins," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 441(C), pages 199-214.
    19. Ikeda, Nobutoshi, 2021. "Stratified structure of fractal scale-free networks generated by local rules," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    20. Ramirez-Arellano, Aldo & Hernández-Simón, Luis Manuel & Bory-Reyes, Juan, 2021. "Two-parameter fractional Tsallis information dimensions of complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:640:y:2024:i:c:s0378437124002139. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.