IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v20y2022i1p132-d1011321.html
   My bibliography  Save this article

Construction and Simulation Analysis of Epidemic Propagation Model Based on COVID-19 Characteristics

Author

Listed:
  • Sheng Bin

    (College of Computer Science & Technology, Qingdao University, Qingdao 266071, China)

Abstract

This paper proposes the epidemic propagation model SEAIHR to elucidate the propagation mechanism of the Corona Virus Disease of 2019 (COVID-19). Based on the analysis of the propagation characteristics of COVID-19, the hospitalization isolation state and recessive healing state are introduced. The home morbidity state is introduced to consider the self-healing of asymptomatic infected populations, the early isolation of close contractors, and the impact of epidemic prevention and control measures. In this paper, by using the real epidemic data combined with the changes in parameters in different epidemic stages, multiple model simulation comparative tests were conducted. The experimental results showed that the fitting and prediction accuracy of the SEAIHR model was significantly better than the classical epidemic propagation model, and the fitting error was 34.4–72.8% lower than that of the classical model in the early and middle stages of the epidemic.

Suggested Citation

  • Sheng Bin, 2022. "Construction and Simulation Analysis of Epidemic Propagation Model Based on COVID-19 Characteristics," IJERPH, MDPI, vol. 20(1), pages 1-16, December.
  • Handle: RePEc:gam:jijerp:v:20:y:2022:i:1:p:132-:d:1011321
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/20/1/132/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/20/1/132/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Asamoah, Joshua Kiddy K. & Jin, Zhen & Sun, Gui-Quan & Seidu, Baba & Yankson, Ernest & Abidemi, Afeez & Oduro, F.T. & Moore, Stephen E. & Okyere, Eric, 2021. "Sensitivity assessment and optimal economic evaluation of a new COVID-19 compartmental epidemic model with control interventions," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    2. Korolev, Ivan, 2021. "Identification and estimation of the SEIRD epidemic model for COVID-19," Journal of Econometrics, Elsevier, vol. 220(1), pages 63-85.
    3. Annas, Suwardi & Isbar Pratama, Muh. & Rifandi, Muh. & Sanusi, Wahidah & Side, Syafruddin, 2020. "Stability analysis and numerical simulation of SEIR model for pandemic COVID-19 spread in Indonesia," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wen-Jing Zhu & Shou-Feng Shen & Wen-Xiu Ma, 2022. "A (2+1)-Dimensional Fractional-Order Epidemic Model with Pulse Jumps for Omicron COVID-19 Transmission and Its Numerical Simulation," Mathematics, MDPI, vol. 10(14), pages 1-14, July.
    2. Gaetano Perone, 2022. "Using the SARIMA Model to Forecast the Fourth Global Wave of Cumulative Deaths from COVID-19: Evidence from 12 Hard-Hit Big Countries," Econometrics, MDPI, vol. 10(2), pages 1-23, April.
    3. M. Hashem Pesaran & Cynthia Fan Yang, 2022. "Matching theory and evidence on Covid‐19 using a stochastic network SIR model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1204-1229, September.
    4. Hortaçsu, Ali & Liu, Jiarui & Schwieg, Timothy, 2021. "Estimating the fraction of unreported infections in epidemics with a known epicenter: An application to COVID-19," Journal of Econometrics, Elsevier, vol. 220(1), pages 106-129.
    5. Gunnar BÃ¥rdsen & Ragnar Nymoen, 2023. "Dynamic time series modelling and forecasting of COVID-19 in Norway," Working Paper Series 19623, Department of Economics, Norwegian University of Science and Technology.
    6. Daniel L. Millimet & Christopher F. Parmeter, 2022. "COVID‐19 severity: A new approach to quantifying global cases and deaths," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(3), pages 1178-1215, July.
    7. Xin, Li & Xi, Chen & Sagir, Mujgan & Wenbo, Zhang, 2023. "How can infectious medical waste be forecasted and transported during the COVID-19 pandemic? A hybrid two-stage method," Technological Forecasting and Social Change, Elsevier, vol. 187(C).
    8. Marinca, Bogdan & Marinca, Vasile & Bogdan, Ciprian, 2021. "Dynamics of SEIR epidemic model by optimal auxiliary functions method," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    9. Das, Ayan Kumar & Kalam, Sidra & Kumar, Chiranjeev & Sinha, Ditipriya, 2021. "TLCoV- An automated Covid-19 screening model using Transfer Learning from chest X-ray images," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    10. Jonas E. Arias & Jesús Fernández-Villaverde & Juan F. Rubio-Ramirez & Minchul Shin, 2021. "Bayesian Estimation of Epidemiological Models: Methods, Causality, and Policy Trade-Offs," Working Papers 21-18, Federal Reserve Bank of Philadelphia.
    11. Abidemi, Afeez & Ackora-Prah, Joseph & Fatoyinbo, Hammed Olawale & Asamoah, Joshua Kiddy K., 2022. "Lyapunov stability analysis and optimization measures for a dengue disease transmission model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 602(C).
    12. John Gibson, 2022. "Government mandated lockdowns do not reduce Covid-19 deaths: implications for evaluating the stringent New Zealand response," New Zealand Economic Papers, Taylor & Francis Journals, vol. 56(1), pages 17-28, January.
    13. INOUE Tomoo & OKIMOTO Tatsuyoshi, 2022. "Exploring the Dynamic Relationship between Mobility and the Spread of COVID-19, and the Role of Vaccines," Discussion papers 22011, Research Institute of Economy, Trade and Industry (RIETI).
    14. Michael Barnett & Greg Buchak & Constantine Yannelis, 2023. "Epidemic responses under uncertainty," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 120(2), pages 2208111120-, January.
    15. Aguilar-Canto, Fernando Javier & de León, Ugo Avila-Ponce & Avila-Vales, Eric, 2022. "Sensitivity theorems of a model of multiple imperfect vaccines for COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    16. Otilia Boldea & Adriana Cornea-Madeira & João Madeira, 2023. "Disentangling the effect of measures, variants, and vaccines on SARS-CoV-2 infections in England: a dynamic intensity model," The Econometrics Journal, Royal Economic Society, vol. 26(3), pages 444-466.
    17. Yuan, Yiran & Li, Ning, 2022. "Optimal control and cost-effectiveness analysis for a COVID-19 model with individual protection awareness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    18. Asamoah, Joshua Kiddy K. & Fatmawati,, 2023. "A fractional mathematical model of heartwater transmission dynamics considering nymph and adult amblyomma ticks," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    19. Hanthanan Arachchilage, Kalpana & Hussaini, Mohammed Yousuff, 2021. "Ranking non-pharmaceutical interventions against Covid-19 global pandemic using global sensitivity analysis—Effect on number of deaths," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    20. Hajri, Youssra & Allali, Amina & Amine, Saida, 2024. "A delayed deterministic and stochastic SIRICV model: Hopf bifurcation and stochastic analysis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 215(C), pages 98-121.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2022:i:1:p:132-:d:1011321. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.