IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v540y2020ics037843711931828x.html
   My bibliography  Save this article

An adaptive numerical approach for the solutions of fractional advection–diffusion and dispersion equations in singular case under Riesz’s derivative operator

Author

Listed:
  • Abu Arqub, Omar
  • Al-Smadi, Mohammed

Abstract

The fractional diffusion and dispersion equations are reinterpreted in determining the effect of fluid flow and displacement processes through certain compressible phenomena and then reconstructed by considering the flow conductivity, energy balance, flow chambers with the interconnected pores, and diffusion flow system. The adaptive reproducing kernel approach is formulated and analyzed to investigate numerical solutions of fractional advection-diffusion and dispersion equations in singular case on a finite domain with Riesz’s fractional derivative. In such alternative representation, the reproducing kernel functions are obtained to provide analytic and approximate solutions in desired Hilbert spaces. To enable the utilized approach more, convergent analysis and error estimates are also given. To assure our results, some features with numerical experiments are presented to confirm the theoretical analysis and to illustrate the performance and effectiveness of the proposed scheme. Graphical and comparisons indicate the significant improvement of the algorithm in solving many singular fractional problems arising in physical issues.

Suggested Citation

  • Abu Arqub, Omar & Al-Smadi, Mohammed, 2020. "An adaptive numerical approach for the solutions of fractional advection–diffusion and dispersion equations in singular case under Riesz’s derivative operator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
  • Handle: RePEc:eee:phsmap:v:540:y:2020:i:c:s037843711931828x
    DOI: 10.1016/j.physa.2019.123257
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843711931828X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.123257?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arqub, Omar Abu & Maayah, Banan, 2018. "Numerical solutions of integrodifferential equations of Fredholm operator type in the sense of the Atangana–Baleanu fractional operator," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 117-124.
    2. Abu Arqub, Omar & Maayah, Banan, 2019. "Modulation of reproducing kernel Hilbert space method for numerical solutions of Riccati and Bernoulli equations in the Atangana-Baleanu fractional sense," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 163-170.
    3. Alquran, Marwan & Jaradat, Imad, 2019. "Delay-asymptotic solutions for the time-fractional delay-type wave equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 527(C).
    4. Qureshi, Sania & Yusuf, Abdullahi, 2019. "Modeling chickenpox disease with fractional derivatives: From caputo to atangana-baleanu," Chaos, Solitons & Fractals, Elsevier, vol. 122(C), pages 111-118.
    5. Hengfei Ding & Changpin Li & YangQuan Chen, 2014. "High-Order Algorithms for Riesz Derivative and Their Applications," Abstract and Applied Analysis, Hindawi, vol. 2014, pages 1-17, May.
    6. Arqub, Omar Abu & Maayah, Banan, 2019. "Fitted fractional reproducing kernel algorithm for the numerical solutions of ABC – Fractional Volterra integro-differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 394-402.
    7. Qureshi, Sania & Atangana, Abdon, 2019. "Mathematical analysis of dengue fever outbreak by novel fractional operators with field data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
    8. El-Ajou, Ahmad & Abu Arqub, Omar & Momani, Shaher & Baleanu, Dumitru & Alsaedi, Ahmed, 2015. "A novel expansion iterative method for solving linear partial differential equations of fractional order," Applied Mathematics and Computation, Elsevier, vol. 257(C), pages 119-133.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Al-Smadi, Mohammed & Arqub, Omar Abu & Zeidan, Dia, 2021. "Fuzzy fractional differential equations under the Mittag-Leffler kernel differential operator of the ABC approach: Theorems and applications," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    2. Hasan, Shatha & El-Ajou, Ahmad & Hadid, Samir & Al-Smadi, Mohammed & Momani, Shaher, 2020. "Atangana-Baleanu fractional framework of reproducing kernel technique in solving fractional population dynamics system," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    3. Djennadi, Smina & Shawagfeh, Nabil & Abu Arqub, Omar, 2021. "A fractional Tikhonov regularization method for an inverse backward and source problems in the time-space fractional diffusion equations," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    4. Omar Abu Arqub & Mohamed S. Osman & Abdel-Haleem Abdel-Aty & Abdel-Baset A. Mohamed & Shaher Momani, 2020. "A Numerical Algorithm for the Solutions of ABC Singular Lane–Emden Type Models Arising in Astrophysics Using Reproducing Kernel Discretization Method," Mathematics, MDPI, vol. 8(6), pages 1-15, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qureshi, Sania & Memon, Zaib-un-Nisa, 2020. "Monotonically decreasing behavior of measles epidemic well captured by Atangana–Baleanu–Caputo fractional operator under real measles data of Pakistan," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    2. Yusuf, Abdullahi & Qureshi, Sania & Feroz Shah, Syed, 2020. "Mathematical analysis for an autonomous financial dynamical system via classical and modern fractional operators," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    3. Omar Abu Arqub & Mohamed S. Osman & Abdel-Haleem Abdel-Aty & Abdel-Baset A. Mohamed & Shaher Momani, 2020. "A Numerical Algorithm for the Solutions of ABC Singular Lane–Emden Type Models Arising in Astrophysics Using Reproducing Kernel Discretization Method," Mathematics, MDPI, vol. 8(6), pages 1-15, June.
    4. El-Dessoky Ahmed, M.M. & Altaf Khan, Muhammad, 2020. "Modeling and analysis of the polluted lakes system with various fractional approaches," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    5. Yadav, Swati & Pandey, Rajesh K., 2020. "Numerical approximation of fractional burgers equation with Atangana–Baleanu derivative in Caputo sense," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    6. Arqub, Omar Abu & Maayah, Banan, 2019. "Fitted fractional reproducing kernel algorithm for the numerical solutions of ABC – Fractional Volterra integro-differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 394-402.
    7. Djennadi, Smina & Shawagfeh, Nabil & Abu Arqub, Omar, 2021. "A fractional Tikhonov regularization method for an inverse backward and source problems in the time-space fractional diffusion equations," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    8. Al-Smadi, Mohammed & Arqub, Omar Abu & Zeidan, Dia, 2021. "Fuzzy fractional differential equations under the Mittag-Leffler kernel differential operator of the ABC approach: Theorems and applications," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    9. Qureshi, Sania & Aziz, Shaheen, 2020. "Fractional modeling for a chemical kinetic reaction in a batch reactor via nonlocal operator with power law kernel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    10. Abro, Kashif Ali & Khan, Ilyas & Nisar, Kottakkaran Sooppy, 2019. "Novel technique of Atangana and Baleanu for heat dissipation in transmission line of electrical circuit," Chaos, Solitons & Fractals, Elsevier, vol. 129(C), pages 40-45.
    11. Qureshi, Sania & Yusuf, Abdullahi, 2019. "Mathematical modeling for the impacts of deforestation on wildlife species using Caputo differential operator," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 32-40.
    12. Li, Zhongfei & Liu, Zhuang & Khan, Muhammad Altaf, 2020. "Fractional investigation of bank data with fractal-fractional Caputo derivative," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    13. Shah, Kamal & Alqudah, Manar A. & Jarad, Fahd & Abdeljawad, Thabet, 2020. "Semi-analytical study of Pine Wilt Disease model with convex rate under Caputo–Febrizio fractional order derivative," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    14. Zuñiga Aguilar, C.J. & Gómez-Aguilar, J.F. & Alvarado-Martínez, V.M. & Romero-Ugalde, H.M., 2020. "Fractional order neural networks for system identification," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    15. Akgül, Ali & Modanli, Mahmut, 2019. "Crank–Nicholson difference method and reproducing kernel function for third order fractional differential equations in the sense of Atangana–Baleanu Caputo derivative," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 10-16.
    16. Sania Qureshi & Norodin A. Rangaig & Dumitru Baleanu, 2019. "New Numerical Aspects of Caputo-Fabrizio Fractional Derivative Operator," Mathematics, MDPI, vol. 7(4), pages 1-14, April.
    17. Yadav, Ram Prasad & Renu Verma,, 2020. "A numerical simulation of fractional order mathematical modeling of COVID-19 disease in case of Wuhan China," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    18. Qureshi, Sania & Jan, Rashid, 2021. "Modeling of measles epidemic with optimized fractional order under Caputo differential operator," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    19. Qureshi, Sania, 2020. "Periodic dynamics of rubella epidemic under standard and fractional Caputo operator with real data from Pakistan," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 178(C), pages 151-165.
    20. Ahmad, Zubair & Ali, Farhad & Khan, Naveed & Khan, Ilyas, 2021. "Dynamics of fractal-fractional model of a new chaotic system of integrated circuit with Mittag-Leffler kernel," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:540:y:2020:i:c:s037843711931828x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.