IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v221y2024icp461-488.html
   My bibliography  Save this article

Modeling and dynamics of measles via fractional differential operator of singular and non-singular kernels

Author

Listed:
  • Farman, Muhammad
  • Xu, Changjin
  • Shehzad, Aamir
  • Akgul, Ali

Abstract

Young children frequently die from measles, which is a major global health concern. Despite being more prevalent in infants, pregnant women, and people with compromised immune systems, it can infect anyone. Novel fractional operators, the constant-proportional Caputo operator, and the constant-proportional Atangana–Baleanu operator are used to create a hybrid fractional order model that helps analyze the dynamic transmission of the measles virus. We assess the measles-free and endemic equilibrium, reproductive number, biological viability, boundedness, well-posedness, and positivity of the model. We apply the Banach contraction principle to verify the uniqueness of the system’s solutions. The proposed system is confirmed to be Ulam–Hyres stable by using fixed point theory results. The aforementioned operators are further analyzed, and the Laplace-Adomian decomposition method is used to numerically simulate the system of fractional differential equations. To support our findings, the outcomes are graphically displayed. The efficacy and memory impact of fractional operators are illustrated through comparisons. Based on fractional parameter values, the study determines important disease-control strategies and shows that vaccinations greatly reduce the spread of measles. By reducing the number of infected people, increasing vaccination coverage lowers the burden of disease on the general population.

Suggested Citation

  • Farman, Muhammad & Xu, Changjin & Shehzad, Aamir & Akgul, Ali, 2024. "Modeling and dynamics of measles via fractional differential operator of singular and non-singular kernels," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 221(C), pages 461-488.
  • Handle: RePEc:eee:matcom:v:221:y:2024:i:c:p:461-488
    DOI: 10.1016/j.matcom.2024.03.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475424000983
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2024.03.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jaharuddin & Toni Bakhtiar, 2020. "Control Policy Mix in Measles Transmission Dynamics Using Vaccination, Therapy, and Treatment," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2020, pages 1-20, March.
    2. Zubair Ahmad & Farhad Ali & Muqrin A. Almuqrin & Saqib Murtaza & Faiza Hasin & Naveed Khan & Ata Ur Rahman & Ilyas Khan, 2022. "Dynamics Of Love Affair Of Romeo And Juliet Through Modern Mathematical Tools: A Critical Analysis Via Fractal-Fractional Differential Operator," FRACTALS (fractals), World Scientific Publishing Co. Pte. Ltd., vol. 30(05), pages 1-13, August.
    3. Pang, Liuyong & Ruan, Shigui & Liu, Sanhong & Zhao, Zhong & Zhang, Xinan, 2015. "Transmission dynamics and optimal control of measles epidemics," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 131-147.
    4. Saqib Murtaza & Poom Kumam & Zubair Ahmad & Thidaporn Seangwattana & Ibn E. Ali, 2022. "Numerical Analysis Of Newly Developed Fractal-Fractional Model Of Casson Fluid With Exponential Memory," FRACTALS (fractals), World Scientific Publishing Co. Pte. Ltd., vol. 30(05), pages 1-10, August.
    5. Qureshi, Sania & Jan, Rashid, 2021. "Modeling of measles epidemic with optimized fractional order under Caputo differential operator," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    6. Ahmad, Zubair & Ali, Farhad & Khan, Naveed & Khan, Ilyas, 2021. "Dynamics of fractal-fractional model of a new chaotic system of integrated circuit with Mittag-Leffler kernel," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    7. Nisar, Kottakkaran Sooppy & Farman, Muhammad & Hincal, Evren & Shehzad, Aamir, 2023. "Modelling and analysis of bad impact of smoking in society with Constant Proportional-Caputo Fabrizio operator," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    8. Dumitru Baleanu & Arran Fernandez & Ali Akgül, 2020. "On a Fractional Operator Combining Proportional and Classical Differintegrals," Mathematics, MDPI, vol. 8(3), pages 1-13, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdelaziz, Mahmoud A.M. & Ismail, Ahmad Izani & Abdullah, Farah A. & Mohd, Mohd Hafiz, 2020. "Codimension one and two bifurcations of a discrete-time fractional-order SEIR measles epidemic model with constant vaccination," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    2. Yujiang Liu & Shujing Gao & Di Chen & Bing Liu, 2024. "Modeling the Transmission Dynamics and Optimal Control Strategy for Huanglongbing," Mathematics, MDPI, vol. 12(17), pages 1-23, August.
    3. Ali Khaleel Dhaiban & Baydaa Khalaf Jabbar, 2021. "An optimal control model of COVID-19 pandemic: a comparative study of five countries," OPSEARCH, Springer;Operational Research Society of India, vol. 58(4), pages 790-809, December.
    4. Shiri, Babak & Baleanu, Dumitru, 2023. "All linear fractional derivatives with power functions’ convolution kernel and interpolation properties," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    5. Mingdong Lyu & Kuofu Liu & Randolph W. Hall, 2024. "Spatial Interaction Analysis of Infectious Disease Import and Export between Regions," IJERPH, MDPI, vol. 21(5), pages 1-19, May.
    6. Jose Diamantino Hernández Guillén & Ángel Martín del Rey & Roberto Casado Vara, 2020. "On the Optimal Control of a Malware Propagation Model," Mathematics, MDPI, vol. 8(9), pages 1-16, September.
    7. Alfifi, H.Y., 2022. "Stability analysis for Schnakenberg reaction-diffusion model with gene expression time delay," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    8. Qureshi, Sania & Jan, Rashid, 2021. "Modeling of measles epidemic with optimized fractional order under Caputo differential operator," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    9. Shah, Kamal & Arfan, Muhammad & Ullah, Aman & Al-Mdallal, Qasem & Ansari, Khursheed J. & Abdeljawad, Thabet, 2022. "Computational study on the dynamics of fractional order differential equations with applications," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    10. Li, Can & Guo, Zun-Guang & Zhang, Zhi-Yu, 2017. "Transmission dynamics of a brucellosis model: Basic reproduction number and global analysis," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 161-172.
    11. Saifullah, Sayed & Ali, Amir & Franc Doungmo Goufo, Emile, 2021. "Investigation of complex behaviour of fractal fractional chaotic attractor with mittag-leffler Kernel," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    12. Yasmin, Humaira, 2022. "Effect of vaccination on non-integer dynamics of pneumococcal pneumonia infection," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    13. Xuan, Liu & Ahmad, Shabir & Ullah, Aman & Saifullah, Sayed & Akgül, Ali & Qu, Haidong, 2022. "Bifurcations, stability analysis and complex dynamics of Caputo fractal-fractional cancer model," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    14. Nudee, K. & Chinviriyasit, S. & Chinviriyasit, W., 2019. "The effect of backward bifurcation in controlling measles transmission by vaccination," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 400-412.
    15. Acay, Bahar & Inc, Mustafa & Mustapha, Umar Tasiu & Yusuf, Abdullahi, 2021. "Fractional dynamics and analysis for a lana fever infectious ailment with Caputo operator," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    16. Kimberly M. Thompson, 2016. "Evolution and Use of Dynamic Transmission Models for Measles and Rubella Risk and Policy Analysis," Risk Analysis, John Wiley & Sons, vol. 36(7), pages 1383-1403, July.
    17. Fu, Xinjie & Wang, JinRong, 2022. "Dynamic stability and optimal control of SISqIqRS epidemic network," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    18. Rahaman, Mostafijur & Mondal, Sankar Prasad & Alam, Shariful & Metwally, Ahmed Sayed M. & Salahshour, Soheil & Salimi, Mehdi & Ahmadian, Ali, 2022. "Manifestation of interval uncertainties for fractional differential equations under conformable derivative," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    19. Shah Hussain & Elissa Nadia Madi & Naveed Iqbal & Thongchai Botmart & Yeliz Karaca & Wael W. Mohammed, 2021. "Fractional Dynamics of Vector-Borne Infection with Sexual Transmission Rate and Vaccination," Mathematics, MDPI, vol. 9(23), pages 1-22, December.
    20. Berhe, Hailay Weldegiorgis & Makinde, Oluwole Daniel & Theuri, David Mwangi, 2019. "Co-dynamics of measles and dysentery diarrhea diseases with optimal control and cost-effectiveness analysis," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 903-921.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:221:y:2024:i:c:p:461-488. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.