IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v600y2022ics0378437122004113.html
   My bibliography  Save this article

Bifurcation control of a delayed fractional-order prey-predator model with cannibalism and disease

Author

Listed:
  • Li, Ning
  • Yan, Mengting

Abstract

In this paper, the bifurcation control for a fractional-order delayed prey-predator system with disease and cannibalism is investigated. Firstly, the existence, uniqueness and non-negativity of the solutions are studies, and the stability of equilibrium points are discussed. Next, taking time delay as the bifurcation parameter, the conditions of creation for Hopf bifurcation are confirmed. Then, two feedback controllers are introduced, which successfully control the Hopf bifurcation, and bifurcation control of the two controllers are simply compared theoretically. Finally, numerical simulations show that cannibalism has an significant influence in controlling the stability of the model, and when the parameters are appropriate, the disease can be removed. Meanwhile, the feedback controllers can control the bifurcation well. In general, the control effect of time-delay feedback controller should be better than that of traditional feedback controller. However, we found that the control effect of the traditional feedback controller is better than the time-delay feedback controller, the control effect completely depends on the selection of parameters.

Suggested Citation

  • Li, Ning & Yan, Mengting, 2022. "Bifurcation control of a delayed fractional-order prey-predator model with cannibalism and disease," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
  • Handle: RePEc:eee:phsmap:v:600:y:2022:i:c:s0378437122004113
    DOI: 10.1016/j.physa.2022.127600
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437122004113
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.127600?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Chengdai & Cao, Jinde & Xiao, Min & Alsaedi, Ahmed & Alsaadi, Fuad E., 2017. "Controlling bifurcation in a delayed fractional predator–prey system with incommensurate orders," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 293-310.
    2. Fathalla A. Rihan & M. Naim Anwar, 2012. "Qualitative Analysis of Delayed SIR Epidemic Model with a Saturated Incidence Rate," International Journal of Differential Equations, Hindawi, vol. 2012, pages 1-13, December.
    3. Wang, Zhen & Xie, Yingkang & Lu, Junwei & Li, Yuxia, 2019. "Stability and bifurcation of a delayed generalized fractional-order prey–predator model with interspecific competition," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 360-369.
    4. Rihan, F.A. & Rajivganthi, C, 2020. "Dynamics of fractional-order delay differential model of prey-predator system with Holling-type III and infection among predators," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    5. Das, Meghadri & Samanta, G.P., 2020. "A delayed fractional order food chain model with fear effect and prey refuge," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 178(C), pages 218-245.
    6. Ahmed, E. & Elgazzar, A.S., 2007. "On fractional order differential equations model for nonlocal epidemics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 379(2), pages 607-614.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuai Li & Chengdai Huang & Xinyu Song, 2019. "Bifurcation Based-Delay Feedback Control Strategy for a Fractional-Order Two-Prey One-Predator System," Complexity, Hindawi, vol. 2019, pages 1-13, April.
    2. Pratap, A. & Raja, R. & Cao, J. & Lim, C.P. & Bagdasar, O., 2019. "Stability and pinning synchronization analysis of fractional order delayed Cohen–Grossberg neural networks with discontinuous activations," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 241-260.
    3. Ghosh, Uttam & Pal, Swadesh & Banerjee, Malay, 2021. "Memory effect on Bazykin’s prey-predator model: Stability and bifurcation analysis," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    4. Du, Wentong & Xiao, Min & Ding, Jie & Yao, Yi & Wang, Zhengxin & Yang, Xinsong, 2023. "Fractional-order PD control at Hopf bifurcation in a delayed predator–prey system with trans-species infectious diseases," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 205(C), pages 414-438.
    5. Huang, Chengdai & Li, Huan & Cao, Jinde, 2019. "A novel strategy of bifurcation control for a delayed fractional predator–prey model," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 808-838.
    6. Huang, Chengdai & Liu, Heng & Chen, Xiaoping & Zhang, Minsong & Ding, Ling & Cao, Jinde & Alsaedi, Ahmed, 2020. "Dynamic optimal control of enhancing feedback treatment for a delayed fractional order predator–prey model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    7. Fang, Qingxiang & Peng, Jigen, 2018. "Synchronization of fractional-order linear complex networks with directed coupling topology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 542-553.
    8. Cuimin Liu & Yonggang Chen & Yingbin Yu & Zhen Wang, 2023. "Bifurcation and Stability Analysis of a New Fractional-Order Prey–Predator Model with Fear Effects in Toxic Injections," Mathematics, MDPI, vol. 11(20), pages 1-13, October.
    9. Xu, Changjin & Liao, Maoxin & Li, Peiluan & Yuan, Shuai, 2021. "Impact of leakage delay on bifurcation in fractional-order complex-valued neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    10. Mahmoud, Gamal M. & Arafa, Ayman A. & Abed-Elhameed, Tarek M. & Mahmoud, Emad E., 2017. "Chaos control of integer and fractional orders of chaotic Burke–Shaw system using time delayed feedback control," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 680-692.
    11. Jianguang Zhu & Kai Li & Binbin Hao, 2019. "Image Restoration by Second-Order Total Generalized Variation and Wavelet Frame Regularization," Complexity, Hindawi, vol. 2019, pages 1-16, March.
    12. Wu, Tianyu & Huang, Xia & Chen, Xiangyong & Wang, Jing, 2020. "Sampled-data H∞ exponential synchronization for delayed semi-Markov jump CDNs: A looped-functional approach," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    13. Gafiychuk, V. & Datsko, B. & Meleshko, V., 2008. "Analysis of fractional order Bonhoeffer–van der Pol oscillator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(2), pages 418-424.
    14. Wang, Xinhe & Lu, Junwei & Wang, Zhen & Li, Yuxia, 2020. "Dynamics of discrete epidemic models on heterogeneous networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    15. Ricardo Almeida & Agnieszka B. Malinowska & Tatiana Odzijewicz, 2019. "Optimal Leader–Follower Control for the Fractional Opinion Formation Model," Journal of Optimization Theory and Applications, Springer, vol. 182(3), pages 1171-1185, September.
    16. Ma, Tingting & Meng, Xinzhu & Hayat, Tasawar & Hobiny, Aatef, 2021. "Stability analysis and optimal harvesting control of a cross-diffusion prey-predator system," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    17. Ruiqing Shi & Ting Lu & Cuihong Wang, 2019. "Dynamic Analysis of a Fractional-Order Model for Hepatitis B Virus with Holling II Functional Response," Complexity, Hindawi, vol. 2019, pages 1-13, August.
    18. Ghanbari, Behzad, 2021. "On detecting chaos in a prey-predator model with prey’s counter-attack on juvenile predators," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    19. Owolabi, Kolade M. & Atangana, Abdon, 2019. "Mathematical analysis and computational experiments for an epidemic system with nonlocal and nonsingular derivative," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 41-49.
    20. Silva, Cristiana J. & Torres, Delfim F.M., 2019. "Stability of a fractional HIV/AIDS model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 164(C), pages 180-190.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:600:y:2022:i:c:s0378437122004113. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.