IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v174y2023ics0960077923007464.html
   My bibliography  Save this article

Investigating the impact of memory effects on computer virus population dynamics: A fractal–fractional approach with numerical analysis

Author

Listed:
  • Avcı, İbrahim
  • Hussain, Azhar
  • Kanwal, Tanzeela

Abstract

In this study, we investigate the impact of memory effects through the application of the fractal–fractional derivative operator on population dynamics in computer viruses. By utilizing numerical analysis techniques, we explore the influence of varying fractal–fractional operator orders on virus propagation and conduct a parameter study to examine the effects of fractal dimension and fractional order on computer virus spread. Furthermore, in order to comprehensively compare and analyze the outcomes from various perspectives, we introduce a novel application of the operational matrix technique to the proposed dynamical system, transforming the fractal–fractional model into the Caputo derivative form. Two different numerical techniques, Adams–Bashforth and Taylor operational matrix, have been employed to solve the two distinct forms of the model. The obtained results yielded highly consistent outcomes for the two numerical methods employed, despite their utilization of distinct derivative operators. The reported results highlight the memory effect associated with fractal–fractional derivatives, where past states and behaviors continue to influence the system. The ability to capture these memory effects through fractal–fractional derivatives can be considered a benefit, enabling a more comprehensive understanding, analysis and modeling of computer virus dynamics. Additionally, we investigate four variants to ensure numerical stability, employing both the Ulam–Hyers (UH) and Ulam–Hyers–Rassias (UHR) criteria.

Suggested Citation

  • Avcı, İbrahim & Hussain, Azhar & Kanwal, Tanzeela, 2023. "Investigating the impact of memory effects on computer virus population dynamics: A fractal–fractional approach with numerical analysis," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
  • Handle: RePEc:eee:chsofr:v:174:y:2023:i:c:s0960077923007464
    DOI: 10.1016/j.chaos.2023.113845
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923007464
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.113845?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tuan Hoang, Manh & Nagy, A.M., 2019. "Uniform asymptotic stability of a Logistic model with feedback control of fractional order and nonstandard finite difference schemes," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 24-34.
    2. Méndez-Bermúdez, J.A. & Peralta-Martinez, Kevin & Sigarreta, José M. & Leonel, Edson D., 2023. "Leaking from the phase space of the Riemann–Liouville fractional standard map," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    3. Atangana, Abdon, 2017. "Fractal-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to predict complex system," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 396-406.
    4. Akgül, Ali & Fatima, Umbreen & Iqbal, Muhammad Sajid & Ahmed, Nauman & Raza, Ali & Iqbal, Zafar & Rafiq, Muhammad, 2021. "A fractal fractional model for computer virus dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    5. Ghosh, Uttam & Pal, Swadesh & Banerjee, Malay, 2021. "Memory effect on Bazykin’s prey-predator model: Stability and bifurcation analysis," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    6. Hu, Zhixing & Wang, Hongwei & Liao, Fucheng & Ma, Wanbiao, 2015. "Stability analysis of a computer virus model in latent period," Chaos, Solitons & Fractals, Elsevier, vol. 75(C), pages 20-28.
    7. José Roberto C. Piqueira & Cristiane M. Batistela, 2019. "Considering Quarantine in the SIRA Malware Propagation Model," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-8, November.
    8. Altan, Aytaç & Karasu, Seçkin & Bekiros, Stelios, 2019. "Digital currency forecasting with chaotic meta-heuristic bio-inspired signal processing techniques," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 325-336.
    9. Singh, Jagdev & Kumar, Devendra & Hammouch, Zakia & Atangana, Abdon, 2018. "A fractional epidemiological model for computer viruses pertaining to a new fractional derivative," Applied Mathematics and Computation, Elsevier, vol. 316(C), pages 504-515.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Avcı, İbrahim & Lort, Hüseyin & Tatlıcıoğlu, Buğce E., 2023. "Numerical investigation and deep learning approach for fractal–fractional order dynamics of Hopfield neural network model," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deniz, Sinan, 2021. "Optimal perturbation iteration method for solving fractional FitzHugh-Nagumo equation," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    2. Imran, M.A., 2020. "Application of fractal fractional derivative of power law kernel (FFP0Dxα,β) to MHD viscous fluid flow between two plates," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    3. Saqib, Muhammad & Khan, Ilyas & Shafie, Sharidan, 2018. "Application of Atangana–Baleanu fractional derivative to MHD channel flow of CMC-based-CNT's nanofluid through a porous medium," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 79-85.
    4. Gao, Fei & Li, Xiling & Li, Wenqin & Zhou, Xianjin, 2021. "Stability analysis of a fractional-order novel hepatitis B virus model with immune delay based on Caputo-Fabrizio derivative," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    5. Dlamini, A. & Doungmo Goufo, E.F., 2023. "Generation of self-similarity in a chaotic system of attractors with many scrolls and their circuit’s implementation," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    6. Mahmood, Tariq & ur Rahman, Mati & Arfan, Muhammad & Kayani, Sadaf-Ilyas & Sun, Mei, 2023. "Mathematical study of Algae as a bio-fertilizer using fractal–fractional dynamic model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 207-222.
    7. Prakash, Amit & Kaur, Hardish, 2021. "Analysis and numerical simulation of fractional Biswas–Milovic model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 298-315.
    8. Zhang, Tianxian & Zhao, Yongqi & Xu, Xiangliang & Wu, Si & Gu, Yujuan, 2024. "Solution and dynamics analysis of fractal-fractional multi-scroll Chen chaotic system based on Adomain decomposition method," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    9. Farman, Muhammad & Ahmad, Aqeel & Zehra, Anum & Nisar, Kottakkaran Sooppy & Hincal, Evren & Akgul, Ali, 2024. "Analysis and controllability of diabetes model for experimental data by using fractional operator," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 218(C), pages 133-148.
    10. Rajpal, Sheetal & Lakhyani, Navin & Singh, Ayush Kumar & Kohli, Rishav & Kumar, Naveen, 2021. "Using handpicked features in conjunction with ResNet-50 for improved detection of COVID-19 from chest X-ray images," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    11. Shang, Zuchong & Qiao, Yuanhua & Duan, Lijuan & Miao, Jun, 2021. "Bifurcation analysis and global dynamics in a predator–prey system of Leslie type with an increasing functional response," Ecological Modelling, Elsevier, vol. 455(C).
    12. Karasu, Seçkin & Altan, Aytaç, 2022. "Crude oil time series prediction model based on LSTM network with chaotic Henry gas solubility optimization," Energy, Elsevier, vol. 242(C).
    13. Yılmaz, Zeynep & Maden, Selahattin & Gökçe, Aytül, 2022. "Dynamics and stability of two predators–one prey mathematical model with fading memory in one predator," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 202(C), pages 526-539.
    14. Ravichandran, C. & Logeswari, K. & Panda, Sumati Kumari & Nisar, Kottakkaran Sooppy, 2020. "On new approach of fractional derivative by Mittag-Leffler kernel to neutral integro-differential systems with impulsive conditions," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    15. Solís-Pérez, J.E. & Gómez-Aguilar, J.F. & Atangana, A., 2018. "Novel numerical method for solving variable-order fractional differential equations with power, exponential and Mittag-Leffler laws," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 175-185.
    16. ur Rahman, Ghaus & Agarwal, Ravi P. & Din, Qamar, 2019. "Mathematical analysis of giving up smoking model via harmonic mean type incidence rate," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 128-148.
    17. Jiang, Kai & Liu, Zhifeng & Tian, Yang & Zhang, Tao & Yang, Congbin, 2022. "An estimation method of fractal parameters on rough surfaces based on the exact spectral moment using artificial neural network," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    18. Jiong Weng & Xiaojing Liu & Youhe Zhou & Jizeng Wang, 2022. "An Explicit Wavelet Method for Solution of Nonlinear Fractional Wave Equations," Mathematics, MDPI, vol. 10(21), pages 1-14, October.
    19. Yavuz, Mehmet & Bonyah, Ebenezer, 2019. "New approaches to the fractional dynamics of schistosomiasis disease model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 373-393.
    20. Etemad, Sina & Avci, Ibrahim & Kumar, Pushpendra & Baleanu, Dumitru & Rezapour, Shahram, 2022. "Some novel mathematical analysis on the fractal–fractional model of the AH1N1/09 virus and its generalized Caputo-type version," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:174:y:2023:i:c:s0960077923007464. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.