IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v386y2020ics009630032030463x.html
   My bibliography  Save this article

Implicit Runge-Kutta and spectral Galerkin methods for the two-dimensional nonlinear Riesz space fractional diffusion equation

Author

Listed:
  • Zhao, Jingjun
  • Zhang, Yanming
  • Xu, Yang

Abstract

A numerical method with high accuracy both in time and in space is proposed for the two-dimensional nonlinear Riesz space fractional diffusion equation. The main idea is based on a spectral Galerkin method in spatial direction and an s-stage implicit Runge-Kutta method in temporal direction. A rigorous stability and error analysis is performed for the proposed method. It is shown that the proposed method is stable and convergent. The optimal spatial error estimate is also derived. Numerical experiments are provided to illustrate the theoretical results.

Suggested Citation

  • Zhao, Jingjun & Zhang, Yanming & Xu, Yang, 2020. "Implicit Runge-Kutta and spectral Galerkin methods for the two-dimensional nonlinear Riesz space fractional diffusion equation," Applied Mathematics and Computation, Elsevier, vol. 386(C).
  • Handle: RePEc:eee:apmaco:v:386:y:2020:i:c:s009630032030463x
    DOI: 10.1016/j.amc.2020.125505
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S009630032030463X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2020.125505?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cheng, Xiujun & Duan, Jinqiao & Li, Dongfang, 2019. "A novel compact ADI scheme for two-dimensional Riesz space fractional nonlinear reaction–diffusion equations," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 452-464.
    2. Bu, Weiping & Tang, Yifa & Wu, Yingchuan & Yang, Jiye, 2015. "Crank–Nicolson ADI Galerkin finite element method for two-dimensional fractional FitzHugh–Nagumo monodomain model," Applied Mathematics and Computation, Elsevier, vol. 257(C), pages 355-364.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Jin-Liang & Li, Hui-Feng, 2021. "Memory-dependent derivative versus fractional derivative (II): Remodelling diffusion process," Applied Mathematics and Computation, Elsevier, vol. 391(C).
    2. Saffarian, Marziyeh & Mohebbi, Akbar, 2022. "Finite difference/spectral element method for one and two-dimensional Riesz space fractional advection–dispersion equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 348-370.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdelkawy, M.A. & Alyami, S.A., 2021. "Legendre-Chebyshev spectral collocation method for two-dimensional nonlinear reaction-diffusion equation with Riesz space-fractional," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    2. Li, Dongfang & Zhang, Chengjian, 2020. "Long time numerical behaviors of fractional pantograph equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 172(C), pages 244-257.
    3. Hu, Dongdong & Cai, Wenjun & Xu, Zhuangzhi & Bo, Yonghui & Wang, Yushun, 2021. "Dissipation-preserving Fourier pseudo-spectral method for the space fractional nonlinear sine–Gordon equation with damping," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 35-59.
    4. Ghosh, Uttam & Pal, Swadesh & Banerjee, Malay, 2021. "Memory effect on Bazykin’s prey-predator model: Stability and bifurcation analysis," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    5. Zhao, Jingjun & Li, Yu & Xu, Yang, 2019. "An explicit fourth-order energy-preserving scheme for Riesz space fractional nonlinear wave equations," Applied Mathematics and Computation, Elsevier, vol. 351(C), pages 124-138.
    6. Qin, Hongyu & Wu, Fengyan, 2019. "Several effective algorithms for nonlinear time fractional models," Applied Mathematics and Computation, Elsevier, vol. 363(C), pages 1-1.
    7. Abbaszadeh, Mostafa & Dehghan, Mehdi, 2021. "Numerical investigation of reproducing kernel particle Galerkin method for solving fractional modified distributed-order anomalous sub-diffusion equation with error estimation," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    8. Hafez, Ramy M. & Zaky, Mahmoud A. & Hendy, Ahmed S., 2021. "A novel spectral Galerkin/Petrov–Galerkin algorithm for the multi-dimensional space–time fractional advection–diffusion–reaction equations with nonsmooth solutions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 678-690.
    9. Cheng, Xiujun & Duan, Jinqiao & Li, Dongfang, 2019. "A novel compact ADI scheme for two-dimensional Riesz space fractional nonlinear reaction–diffusion equations," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 452-464.
    10. Hosseininia, M. & Heydari, M.H., 2019. "Legendre wavelets for the numerical solution of nonlinear variable-order time fractional 2D reaction-diffusion equation involving Mittag–Leffler non-singular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 400-407.
    11. Sarita Nandal & Mahmoud A. Zaky & Rob H. De Staelen & Ahmed S. Hendy, 2021. "Numerical Simulation for a Multidimensional Fourth-Order Nonlinear Fractional Subdiffusion Model with Time Delay," Mathematics, MDPI, vol. 9(23), pages 1-15, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:386:y:2020:i:c:s009630032030463x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.