IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v141y2020ics0960077920307463.html
   My bibliography  Save this article

Homotopy analysis method and its applications in the valuation of European call options with time-fractional Black-Scholes equation

Author

Listed:
  • Fadugba, Sunday Emmanuel

Abstract

This paper presents the applications of Homotopy Analysis Method (HAM) in the valuation of a European Call Option (ECO) with Time-Fractional Black-Scholes Equation (TFBSE). The fractional derivative is considered in the sense of Caputo. Also, it is assumed that the stock price pays no dividend and follows the geometric Brownian motion. Based on HAM, a series solution for TFBSE has been obtained successfully. The valuation formula for the price of ECO with fractional order is also obtained. The accuracy, effectiveness and suitability of HAM were tested on two illustrative examples in the context of the Crank Nicolson Method (CRN), Binomial Model (BM) and the Black-Scholes Model (BSM). The comparative study of the results obtained via HAM, CRN, BM and BSM is presented. Furthermore, the physical behaviour of the option prices obtained via HAM has been shown in terms of plots for diverse fractional order. Moreover, HAM is found to be accurate, effective and suitable for the solution of TFBSE. Hence, it can be concluded that HAM converges faster to the analytical solution and is a good alternative tool to determine the price of ECO with fractional order.

Suggested Citation

  • Fadugba, Sunday Emmanuel, 2020. "Homotopy analysis method and its applications in the valuation of European call options with time-fractional Black-Scholes equation," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
  • Handle: RePEc:eee:chsofr:v:141:y:2020:i:c:s0960077920307463
    DOI: 10.1016/j.chaos.2020.110351
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920307463
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110351?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Álvaro Cartea, 2013. "Derivatives pricing with marked point processes using tick-by-tick data," Quantitative Finance, Taylor & Francis Journals, vol. 13(1), pages 111-123, January.
    2. J. L. Prigent, 1997. "Option pricing with a general marked point process," THEMA Working Papers 97-36, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    3. Tomas Björk & Yuri Kabanov & Wolfgang Runggaldier, 1997. "Bond Market Structure in the Presence of Marked Point Processes," Mathematical Finance, Wiley Blackwell, vol. 7(2), pages 211-239, April.
    4. Asma Ali Elbeleze & Adem Kılıçman & Bachok M. Taib, 2013. "Homotopy Perturbation Method for Fractional Black-Scholes European Option Pricing Equations Using Sumudu Transform," Mathematical Problems in Engineering, Hindawi, vol. 2013, pages 1-7, May.
    5. Gao, Wei & Veeresha, P. & Prakasha, D.G. & Baskonus, Haci Mehmet & Yel, Gulnur, 2020. "New approach for the model describing the deathly disease in pregnant women using Mittag-Leffler function," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    6. Zaevski, Tsvetelin S. & Kounchev, Ognyan & Savov, Mladen, 2019. "Two frameworks for pricing defaultable derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 309-319.
    7. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    8. Rodrigo Herrera & Adam Clements, 2020. "A marked point process model for intraday financial returns: modeling extreme risk," Empirical Economics, Springer, vol. 58(4), pages 1575-1601, April.
    9. Jean-Luc Prigent, 2001. "Option Pricing with a General Marked Point Process," Mathematics of Operations Research, INFORMS, vol. 26(1), pages 50-66, February.
    10. Cox, John C. & Ross, Stephen A., 1976. "The valuation of options for alternative stochastic processes," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 145-166.
    11. Veeresha, P. & Baskonus, Haci Mehmet & Prakasha, D.G. & Gao, Wei & Yel, Gulnur, 2020. "Regarding new numerical solution of fractional Schistosomiasis disease arising in biological phenomena," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jing Chang & Jin Zhang & Ming Cai, 2021. "Series Solutions of High-Dimensional Fractional Differential Equations," Mathematics, MDPI, vol. 9(17), pages 1-21, August.
    2. Agus Sugandha & Endang Rusyaman & Sukono & Ema Carnia, 2023. "A New Solution to the Fractional Black–Scholes Equation Using the Daftardar-Gejji Method," Mathematics, MDPI, vol. 11(24), pages 1-25, December.
    3. Liu, Tao, 2022. "Porosity reconstruction based on Biot elastic model of porous media by homotopy perturbation method," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    4. Agus Sugandha & Endang Rusyaman & Sukono & Ema Carnia, 2024. "Using a Mix of Finite Difference Methods and Fractional Differential Transformations to Solve Modified Black–Scholes Fractional Equations," Mathematics, MDPI, vol. 12(7), pages 1-15, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. C. Mancini, 2002. "The European options hedge perfectly in a Poisson-Gaussian stock market model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 9(2), pages 87-102.
    2. Peng Shi & Glenn M. Fung & Daniel Dickinson, 2022. "Assessing hail risk for property insurers with a dependent marked point process," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(1), pages 302-328, January.
    3. Nuugulu, Samuel M & Gideon, Frednard & Patidar, Kailash C, 2021. "A robust numerical scheme for a time-fractional Black-Scholes partial differential equation describing stock exchange dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    4. Mauricio Junca & Rafael Serrano, 2014. "Utility maximization in pure-jump models driven by marked point processes and nonlinear wealth dynamics," Papers 1411.1103, arXiv.org, revised Sep 2015.
    5. Steven Kou, 2000. "A Jump Diffusion Model for Option Pricing with Three Properties: Leptokurtic Feature, Volatility Smile, and Analytical Tractability," Econometric Society World Congress 2000 Contributed Papers 0062, Econometric Society.
    6. Peter Carr & Liuren Wu, 2014. "Static Hedging of Standard Options," Journal of Financial Econometrics, Oxford University Press, vol. 12(1), pages 3-46.
    7. Sergio Zúñiga, 1999. "Modelos de Tasas de Interés en Chile: Una Revisión," Latin American Journal of Economics-formerly Cuadernos de Economía, Instituto de Economía. Pontificia Universidad Católica de Chile., vol. 36(108), pages 875-893.
    8. Sandrine Lardic & Claire Gauthier, 2003. "Un modèle multifactoriel des spreads de crédit : estimation sur panels complets et incomplets," Économie et Prévision, Programme National Persée, vol. 159(3), pages 53-69.
    9. René Garcia & Richard Luger & Eric Renault, 2000. "Asymmetric Smiles, Leverage Effects and Structural Parameters," Working Papers 2000-57, Center for Research in Economics and Statistics.
    10. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    11. Karl Friedrich Mina & Gerald H. L. Cheang & Carl Chiarella, 2015. "Approximate Hedging Of Options Under Jump-Diffusion Processes," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(04), pages 1-26.
    12. Bettis, J. Carr & Bizjak, John & Coles, Jeffrey L. & Kalpathy, Swaminathan, 2018. "Performance-vesting provisions in executive compensation," Journal of Accounting and Economics, Elsevier, vol. 66(1), pages 194-221.
    13. Hi Jun Choe & Jeong Ho Chu & So Jeong Shin, 2014. "Recombining binomial tree for constant elasticity of variance process," Papers 1410.5955, arXiv.org.
    14. Rodriguez, Ricardo J., 2002. "Lognormal option pricing for arbitrary underlying assets: a synthesis," The Quarterly Review of Economics and Finance, Elsevier, vol. 42(3), pages 577-586.
    15. Monteiro, Ana Margarida & Tutuncu, Reha H. & Vicente, Luis N., 2008. "Recovering risk-neutral probability density functions from options prices using cubic splines and ensuring nonnegativity," European Journal of Operational Research, Elsevier, vol. 187(2), pages 525-542, June.
    16. Shuang Xiao & Guo Li & Yunjing Jia, 2017. "Estimating the Constant Elasticity of Variance Model with Data-Driven Markov Chain Monte Carlo Methods," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(01), pages 1-23, February.
    17. Andrea Pascucci & Marco Di Francesco, 2005. "On the complete model with stochastic volatility by Hobson and Rogers," Finance 0503013, University Library of Munich, Germany.
    18. Chiara D'Alpaos & Cesare Dosi & Michele Moretto, 2005. "Concession lenght and investment timing flexibility," Working Papers ubs0502, University of Brescia, Department of Economics.
    19. Cimpoiasu, Rodica, 2018. "New candidates for arbitrage-free stock price models via generalized conditional symmetry method," Applied Mathematics and Computation, Elsevier, vol. 333(C), pages 460-466.
    20. Panagiotidis, Theodore & Printzis, Panagiotis, 2020. "What is the investment loss due to uncertainty?," Global Finance Journal, Elsevier, vol. 45(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:141:y:2020:i:c:s0960077920307463. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.