IDEAS home Printed from https://ideas.repec.org/p/uts/rpaper/340.html
   My bibliography  Save this paper

Approximate Hedging of Options under Jump-Diffusion Processes

Author

Listed:

Abstract

We consider the problem of hedging a European-type option in a market where asset prices have jump-diffusion dynamics. It is known that markets with jumps are incomplete in the context of Harrison and Pliska (1981) and that there are several risk-neutral measures one can use to price and hedge options (Cont and Tankov, 2004; Miyahara, 2012). As in Jensen (1999) and Leon et al. (2002), we approximate such a market by discretizing the jumps in an averaged sense, and complete it by including traded options in the model and hedge portfolio as utilized in Cont et al. (2007) and He et al. (2006). Under suitable conditions, we get a unique risk-neutral measure, which is used to determine the option price partial differential equation, along with the asset positions that will replicate the option payoff. This procedure is then implemented on a particular set of stock and option prices, and its performance is compared with the minimal variance and delta hedging strategies.

Suggested Citation

  • Karl Mina & Gerald Cheang & Carl Chiarella, 2013. "Approximate Hedging of Options under Jump-Diffusion Processes," Research Paper Series 340, Quantitative Finance Research Centre, University of Technology, Sydney.
  • Handle: RePEc:uts:rpaper:340
    as

    Download full text from publisher

    File URL: https://www.uts.edu.au/sites/default/files/qfr-archive-03/QFR-rp340.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Chang Mo Ahn, 1992. "Option Pricing When Jump Risk Is Systematic1," Mathematical Finance, Wiley Blackwell, vol. 2(4), pages 299-308, October.
    2. Harrison, J. Michael & Pliska, Stanley R., 1981. "Martingales and stochastic integrals in the theory of continuous trading," Stochastic Processes and their Applications, Elsevier, vol. 11(3), pages 215-260, August.
    3. Gerald Cheang & Carl Chiarella, 2011. "A Modern View on Merton's Jump-Diffusion Model," Research Paper Series 287, Quantitative Finance Research Centre, University of Technology, Sydney.
    4. Marco Frittelli, 2000. "The Minimal Entropy Martingale Measure and the Valuation Problem in Incomplete Markets," Mathematical Finance, Wiley Blackwell, vol. 10(1), pages 39-52, January.
    5. Ball, Clifford A & Torous, Walter N, 1985. "On Jumps in Common Stock Prices and Their Impact on Call Option Pricing," Journal of Finance, American Finance Association, vol. 40(1), pages 155-173, March.
    6. David S. Bates, "undated". "Pricing Options Under Jump-Diffusion Processes," Rodney L. White Center for Financial Research Working Papers 37-88, Wharton School Rodney L. White Center for Financial Research.
    7. Robert Jarrow & Dilip Madan, 1995. "Option Pricing Using The Term Structure Of Interest Rates To Hedge Systematic Discontinuities In Asset Returns1," Mathematical Finance, Wiley Blackwell, vol. 5(4), pages 311-336, October.
    8. S. G. Kou, 2002. "A Jump-Diffusion Model for Option Pricing," Management Science, INFORMS, vol. 48(8), pages 1086-1101, August.
    9. Claudia Ceci & Anna Gerardi, 2011. "Utility indifference valuation for jump risky assets," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 34(2), pages 85-120, November.
    10. N. Bellamy & M. Jeanblanc, 2000. "Incompleteness of markets driven by a mixed diffusion," Finance and Stochastics, Springer, vol. 4(2), pages 209-222.
    11. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    12. C. He & J. Kennedy & T. Coleman & P. Forsyth & Y. Li & K. Vetzal, 2006. "Calibration and hedging under jump diffusion," Review of Derivatives Research, Springer, vol. 9(1), pages 1-35, January.
    13. Leif Andersen & Jesper Andreasen, 2000. "Jump-Diffusion Processes: Volatility Smile Fitting and Numerical Methods for Option Pricing," Review of Derivatives Research, Springer, vol. 4(3), pages 231-262, October.
    14. Naik, Vasanttilak & Lee, Moon, 1990. "General Equilibrium Pricing of Options on the Market Portfolio with Discontinuous Returns," The Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 493-521.
    15. Tomas Björk & Yuri Kabanov & Wolfgang Runggaldier, 1997. "Bond Market Structure in the Presence of Marked Point Processes," Mathematical Finance, Wiley Blackwell, vol. 7(2), pages 211-239, April.
    16. Robert K. Hammond & J. Eric Bickel, 2013. "Reexamining Discrete Approximations to Continuous Distributions," Decision Analysis, INFORMS, vol. 10(1), pages 6-25, March.
    17. Allen C. Miller, III & Thomas R. Rice, 1983. "Discrete Approximations of Probability Distributions," Management Science, INFORMS, vol. 29(3), pages 352-362, March.
    18. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leonidas S. Rompolis & Elias Tzavalis, 2017. "Pricing and hedging contingent claims using variance and higher order moment swaps," Quantitative Finance, Taylor & Francis Journals, vol. 17(4), pages 531-550, April.
    2. Guanghua Lian & Robert J. Elliott & Petko Kalev & Zhaojun Yang, 2022. "Approximate pricing of American exchange options with jumps," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(6), pages 983-1001, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kozarski, R., 2013. "Pricing and hedging in the VIX derivative market," Other publications TiSEM 221fefe0-241e-4914-b6bd-c, Tilburg University, School of Economics and Management.
    2. Blanchet-Scalliet, Christophette & El Karoui, Nicole & Martellini, Lionel, 2005. "Dynamic asset pricing theory with uncertain time-horizon," Journal of Economic Dynamics and Control, Elsevier, vol. 29(10), pages 1737-1764, October.
    3. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    4. C. Mancini, 2002. "The European options hedge perfectly in a Poisson-Gaussian stock market model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 9(2), pages 87-102.
    5. Carolyn W. Chang, 1995. "A No-Arbitrage Martingale Analysis For Jump-Diffusion Valuation," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 18(3), pages 351-381, September.
    6. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    7. Chang, Charles & Fuh, Cheng-Der & Lin, Shih-Kuei, 2013. "A tale of two regimes: Theory and empirical evidence for a Markov-modulated jump diffusion model of equity returns and derivative pricing implications," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 3204-3217.
    8. Jean-Luc Prigent, 2001. "Option Pricing with a General Marked Point Process," Mathematics of Operations Research, INFORMS, vol. 26(1), pages 50-66, February.
    9. Frances Shaw & Finbarr Murphy & Fergal G. O’Brien, 2016. "Jumps in Euribor and the effect of ECB monetary policy announcements," Environment Systems and Decisions, Springer, vol. 36(2), pages 142-157, June.
    10. Colino, Jesús P. & Stute, Winfried, 2008. "Credit risk with semimartingales and risk-neutrality," DES - Working Papers. Statistics and Econometrics. WS ws085417, Universidad Carlos III de Madrid. Departamento de Estadística.
    11. J. S. Kennedy & P. A. Forsyth & K. R. Vetzal, 2009. "Dynamic Hedging Under Jump Diffusion with Transaction Costs," Operations Research, INFORMS, vol. 57(3), pages 541-559, June.
    12. Hilliard, Jimmy E. & Hilliard, Jitka, 2019. "A jump-diffusion model for pricing and hedging with margined options: An application to Brent crude oil contracts," Journal of Banking & Finance, Elsevier, vol. 98(C), pages 137-155.
    13. Kuo-Shing Chen & Yu-Chuan Huang, 2021. "Detecting Jump Risk and Jump-Diffusion Model for Bitcoin Options Pricing and Hedging," Mathematics, MDPI, vol. 9(20), pages 1-24, October.
    14. Hatem Ben-Ameur & Rim Chérif & Bruno Rémillard, 2016. "American-style options in jump-diffusion models: estimation and evaluation," Quantitative Finance, Taylor & Francis Journals, vol. 16(8), pages 1313-1324, August.
    15. C. He & J. Kennedy & T. Coleman & P. Forsyth & Y. Li & K. Vetzal, 2006. "Calibration and hedging under jump diffusion," Review of Derivatives Research, Springer, vol. 9(1), pages 1-35, January.
    16. Mi-Hsiu Chiang & Chang-Yi Li & Son-Nan Chen, 2016. "Pricing currency options under double exponential jump diffusion in a Markov-modulated HJM economy," Review of Quantitative Finance and Accounting, Springer, vol. 46(3), pages 459-482, April.
    17. Melanie Cao & Batur Celik, 2021. "Valuation of bitcoin options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(7), pages 1007-1026, July.
    18. Volk-Makarewicz, Warren & Borovkova, Svetlana & Heidergott, Bernd, 2022. "Assessing the impact of jumps in an option pricing model: A gradient estimation approach," European Journal of Operational Research, Elsevier, vol. 298(2), pages 740-751.
    19. Oliver X. Li & Weiping Li, 2015. "Hedging jump risk, expected returns and risk premia in jump-diffusion economies," Quantitative Finance, Taylor & Francis Journals, vol. 15(5), pages 873-888, May.
    20. Michael C. Fu & Bingqing Li & Guozhen Li & Rongwen Wu, 2017. "Option Pricing for a Jump-Diffusion Model with General Discrete Jump-Size Distributions," Management Science, INFORMS, vol. 63(11), pages 3961-3977, November.

    More about this item

    Keywords

    Incomplete markets; Jump-diffusion; Hedge portfolios; Compound Poisson processes; Integro-partial differential equation;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uts:rpaper:340. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Duncan Ford (email available below). General contact details of provider: https://edirc.repec.org/data/qfutsau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.