IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v140y2020ics0960077920306469.html
   My bibliography  Save this article

Continuity and variation analysis of fractional uncertain processes

Author

Listed:
  • Sheng, Yuhong
  • Yao, Kai
  • Qin, Zhongfeng

Abstract

The canonical Liu process is a stationary and independent increment uncertain process with normal increments. As one of the most important types of uncertain processes, the fractional Liu process is presented as a variant of canonical Liu process, which has a potential application in modeling an irregular movement with long memory in a system associated with human uncertainty rather than stochastic factors. This paper is devoted to studying the mathematical properties of fractional Liu process such as the increments, variation and sample continuity, especially the Hölder continuity of its sample paths. The obtained results lay the theoretical foundation and promote the applications of fractional Liu processes.

Suggested Citation

  • Sheng, Yuhong & Yao, Kai & Qin, Zhongfeng, 2020. "Continuity and variation analysis of fractional uncertain processes," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
  • Handle: RePEc:eee:chsofr:v:140:y:2020:i:c:s0960077920306469
    DOI: 10.1016/j.chaos.2020.110250
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920306469
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110250?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hu, Yaozhong & Nualart, David & Song, Xiaoming, 2008. "A singular stochastic differential equation driven by fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 78(14), pages 2075-2085, October.
    2. Jin, Ting & Zhu, Yuanguo, 2020. "First hitting time about solution for an uncertain fractional differential equation and application to an uncertain risk index model," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    3. Yang, Xiangfeng & Zhang, Zhiqiang & Gao, Xin, 2019. "Asian-barrier option pricing formulas of uncertain financial market," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 79-86.
    4. Yang, Xiangfeng & Liu, Yuhan & Park, Gyei-Kark, 2020. "Parameter estimation of uncertain differential equation with application to financial market," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    5. Kai Yao & Baoding Liu, 2020. "Parameter estimation in uncertain differential equations," Fuzzy Optimization and Decision Making, Springer, vol. 19(1), pages 1-12, March.
    6. Chen, Xiaowei, 2012. "Variation analysis of uncertain stationary independent increment processes," European Journal of Operational Research, Elsevier, vol. 222(2), pages 312-316.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shen, Jiayu & Shi, Jianxin & Gao, Lingceng & Zhang, Qiang & Zhu, Kai, 2023. "Uncertain green product supply chain with government intervention," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 208(C), pages 136-156.
    2. Najafi, Alireza & Taleghani, Rahman, 2022. "Fractional Liu uncertain differential equation and its application to finance," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    3. Shi, Gang & Gao, Jinwu, 2021. "European Option Pricing Problems with Fractional Uncertain Processes," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin, Ting & Yang, Xiangfeng, 2021. "Monotonicity theorem for the uncertain fractional differential equation and application to uncertain financial market," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 203-221.
    2. Jia, Lifen & Chen, Wei, 2020. "Knock-in options of an uncertain stock model with floating interest rate," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    3. Shi, Gang & Gao, Jinwu, 2021. "European Option Pricing Problems with Fractional Uncertain Processes," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    4. Pan, Zeyu & Gao, Yin & Yuan, Lin, 2021. "Bermudan options pricing formulas in uncertain financial markets," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    5. Wang, Weiwei & Ralescu, Dan A., 2021. "Valuation of lookback option under uncertain volatility model," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    6. Jin, Ting & Ding, Hui & Xia, Hongxuan & Bao, Jinfeng, 2021. "Reliability index and Asian barrier option pricing formulas of the uncertain fractional first-hitting time model with Caputo type," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    7. Lu, Jing & Yang, Xiangfeng & Tian, Miao, 2022. "Barrier swaption pricing formulae of mean-reverting model in uncertain environment," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    8. He, Liu & Zhu, Yuanguo, 2024. "Nonparametric estimation for uncertain fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    9. Jian Zhou & Yujiao Jiang & Athanasios A. Pantelous & Weiwen Dai, 2023. "A systematic review of uncertainty theory with the use of scientometrical method," Fuzzy Optimization and Decision Making, Springer, vol. 22(3), pages 463-518, September.
    10. Liu He & Yuanguo Zhu & Ziqiang Lu, 2023. "Parameter estimation for uncertain fractional differential equations," Fuzzy Optimization and Decision Making, Springer, vol. 22(1), pages 103-122, March.
    11. Najafi, Alireza & Taleghani, Rahman, 2022. "Fractional Liu uncertain differential equation and its application to finance," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    12. Jin, Ting & Zhu, Yuanguo, 2020. "First hitting time about solution for an uncertain fractional differential equation and application to an uncertain risk index model," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    13. Jie, Ke-Wei & Liu, San-Yang & Sun, Xiao-Jun & Xu, Yun-Cheng, 2023. "A dynamic ripple-spreading algorithm for solving mean–variance of shortest path model in uncertain random networks," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    14. Zhang, Guidong & Sheng, Yuhong, 2022. "Estimating time-varying parameters in uncertain differential equations," Applied Mathematics and Computation, Elsevier, vol. 425(C).
    15. Tingqing Ye & Baoding Liu, 2023. "Uncertain hypothesis test for uncertain differential equations," Fuzzy Optimization and Decision Making, Springer, vol. 22(2), pages 195-211, June.
    16. Tang, Han & Yang, Xiangfeng, 2022. "Moment estimation in uncertain differential equations based on the Milstein scheme," Applied Mathematics and Computation, Elsevier, vol. 418(C).
    17. Waichon Lio & Rui Kang, 2023. "Bayesian rule in the framework of uncertainty theory," Fuzzy Optimization and Decision Making, Springer, vol. 22(3), pages 337-358, September.
    18. Noorani, Idin & Mehrdoust, Farshid, 2022. "Parameter estimation of uncertain differential equation by implementing an optimized artificial neural network," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    19. Zhiyong Huang & Chunliu Zhu & Jinwu Gao, 2021. "Stability analysis for uncertain differential equation by Lyapunov’s second method," Fuzzy Optimization and Decision Making, Springer, vol. 20(1), pages 129-144, March.
    20. Gao, Yin & Gao, Jinwu & Yang, Xiangfeng, 2022. "Parameter estimation in uncertain delay differential equations via the method of moments," Applied Mathematics and Computation, Elsevier, vol. 431(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:140:y:2020:i:c:s0960077920306469. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.