IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v143y2021ics0960077920309978.html
   My bibliography  Save this article

European Option Pricing Problems with Fractional Uncertain Processes

Author

Listed:
  • Shi, Gang
  • Gao, Jinwu

Abstract

Compared to canonical Liu processes, fractional Liu processes possess the property of long memory which makes them more flexible in modeling stock prices. This paper calculates the moments of a fractional Liu process and the expected value of a geometric fractional Liu process. It derives some pricing formulas of the European options with the stock as underlying asset whose price is assumed to follow a geometric fractional Liu process. Algorithms are designed to compute the option prices based on the pricing formulas, and numerical experiments are performed to verify the effectiveness of the algorithms.

Suggested Citation

  • Shi, Gang & Gao, Jinwu, 2021. "European Option Pricing Problems with Fractional Uncertain Processes," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
  • Handle: RePEc:eee:chsofr:v:143:y:2021:i:c:s0960077920309978
    DOI: 10.1016/j.chaos.2020.110606
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920309978
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110606?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Qisheng & Zhang, Qian & Liu, Chuan, 2019. "The pricing and numerical analysis of lookback options for mixed fractional Brownian motion," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 123-128.
    2. Sheng, Yuhong & Yao, Kai & Qin, Zhongfeng, 2020. "Continuity and variation analysis of fractional uncertain processes," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    3. Yang, Xiangfeng & Zhang, Zhiqiang & Gao, Xin, 2019. "Asian-barrier option pricing formulas of uncertain financial market," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 79-86.
    4. Kai Yao & Baoding Liu, 2020. "Parameter estimation in uncertain differential equations," Fuzzy Optimization and Decision Making, Springer, vol. 19(1), pages 1-12, March.
    5. L. C. G. Rogers, 1997. "Arbitrage with Fractional Brownian Motion," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 95-105, January.
    6. Jin, Ting & Zhu, Yuanguo, 2020. "First hitting time about solution for an uncertain fractional differential equation and application to an uncertain risk index model," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    7. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    8. Yang, Xiangfeng & Liu, Yuhan & Park, Gyei-Kark, 2020. "Parameter estimation of uncertain differential equation with application to financial market," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shen, Jiayu & Shi, Jianxin & Gao, Lingceng & Zhang, Qiang & Zhu, Kai, 2023. "Uncertain green product supply chain with government intervention," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 208(C), pages 136-156.
    2. Wang, Weiwei & Ralescu, Dan A., 2021. "Valuation of lookback option under uncertain volatility model," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    3. Najafi, Alireza & Taleghani, Rahman, 2022. "Fractional Liu uncertain differential equation and its application to finance," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jia, Lifen & Chen, Wei, 2020. "Knock-in options of an uncertain stock model with floating interest rate," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    2. Jin, Ting & Yang, Xiangfeng, 2021. "Monotonicity theorem for the uncertain fractional differential equation and application to uncertain financial market," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 203-221.
    3. Wang, Weiwei & Ralescu, Dan A., 2021. "Valuation of lookback option under uncertain volatility model," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    4. Jin, Ting & Ding, Hui & Xia, Hongxuan & Bao, Jinfeng, 2021. "Reliability index and Asian barrier option pricing formulas of the uncertain fractional first-hitting time model with Caputo type," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    5. Sheng, Yuhong & Yao, Kai & Qin, Zhongfeng, 2020. "Continuity and variation analysis of fractional uncertain processes," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    6. Najafi, Alireza & Taleghani, Rahman, 2022. "Fractional Liu uncertain differential equation and its application to finance," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    7. Pan, Zeyu & Gao, Yin & Yuan, Lin, 2021. "Bermudan options pricing formulas in uncertain financial markets," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    8. Zhiyong Huang & Chunliu Zhu & Jinwu Gao, 2021. "Stability analysis for uncertain differential equation by Lyapunov’s second method," Fuzzy Optimization and Decision Making, Springer, vol. 20(1), pages 129-144, March.
    9. Lu, Jing & Yang, Xiangfeng & Tian, Miao, 2022. "Barrier swaption pricing formulae of mean-reverting model in uncertain environment," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    10. He, Liu & Zhu, Yuanguo, 2024. "Nonparametric estimation for uncertain fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    11. Liu He & Yuanguo Zhu & Ziqiang Lu, 2023. "Parameter estimation for uncertain fractional differential equations," Fuzzy Optimization and Decision Making, Springer, vol. 22(1), pages 103-122, March.
    12. Liu, Zhe & Yang, Ying, 2022. "Moment estimation for parameters in high-order uncertain differential equations," Applied Mathematics and Computation, Elsevier, vol. 433(C).
    13. Jin, Ting & Zhu, Yuanguo, 2020. "First hitting time about solution for an uncertain fractional differential equation and application to an uncertain risk index model," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    14. Jie, Ke-Wei & Liu, San-Yang & Sun, Xiao-Jun & Xu, Yun-Cheng, 2023. "A dynamic ripple-spreading algorithm for solving mean–variance of shortest path model in uncertain random networks," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    15. Vasile Brătian & Ana-Maria Acu & Camelia Oprean-Stan & Emil Dinga & Gabriela-Mariana Ionescu, 2021. "Efficient or Fractal Market Hypothesis? A Stock Indexes Modelling Using Geometric Brownian Motion and Geometric Fractional Brownian Motion," Mathematics, MDPI, vol. 9(22), pages 1-20, November.
    16. Cheridito, Patrick, 2004. "Gaussian moving averages, semimartingales and option pricing," Stochastic Processes and their Applications, Elsevier, vol. 109(1), pages 47-68, January.
    17. Robert Elliott & Leunglung Chan, 2004. "Perpetual American options with fractional Brownian motion," Quantitative Finance, Taylor & Francis Journals, vol. 4(2), pages 123-128.
    18. Zhang, Guidong & Sheng, Yuhong, 2022. "Estimating time-varying parameters in uncertain differential equations," Applied Mathematics and Computation, Elsevier, vol. 425(C).
    19. Tingqing Ye & Baoding Liu, 2023. "Uncertain hypothesis test for uncertain differential equations," Fuzzy Optimization and Decision Making, Springer, vol. 22(2), pages 195-211, June.
    20. Dufera, Tamirat Temesgen, 2024. "Fractional Brownian motion in option pricing and dynamic delta hedging: Experimental simulations," The North American Journal of Economics and Finance, Elsevier, vol. 69(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:143:y:2021:i:c:s0960077920309978. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.